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Abstract— We design a peer-to-peer technique called
ZIGZAG for single-source media streaming. ZIGZAG al-
lows the media server to distribute content to many clients
by organizing them into an appropriate tree rooted at the
server. This application-layer multicast tree has a height
O( ������� ) where � is the number of clients, and a node de-
gree bounded by a constant. This helps reduce the num-
ber of processing hops on the delivery path to a client while
avoiding network bottleneck. Consequently, the end-to-end
delay is kept small. Although one could build a tree sat-
isfying such properties easily, an efficient control protocol
between the nodes must be in place to maintain the tree un-
der the effects of network dynamics and unpredictable client
behaviors. ZIGZAG handles such situations gracefully re-
quiring a constant amortized control overhead. Especially,
failure recovery can be done regionally with little impact on
the existing clients and mostly no burden on the server.

Keywords— Application-Layer Multicast, Media Stream-
ing, Peer to Peer.

I. INTRODUCTION

We are interested in the problem of streaming live
bandwidth-intensive media from a single source to a large
quantity of receivers on the Internet. The simplest solu-
tion dedicates an individual connection to stream the con-
tent to each receiver. This method consumes a tremendous
amount of costly bandwidth and leads to an inferior qual-
ity stream for the receiver, making it nearly impossible for
a service provider to serve quality streaming to large audi-
ences while generating profits. IP Multicast [1], [2] could
be the best way to overcome this drawback since it was
designed for group-oriented applications. However, its de-
ployment on the Internet is still limited due to several fun-
damental concerns [3], [4]. Therefore, we seek a solution
that employs IP unicast only but offers considerably bet-
ter performance efficiency than the dedicated-connection
approach.

In the absence of budget for extra resources, we opt to
use the peer-to-peer (P2P) approach to tackle the problem.

This research is partially supported by US National Science Founda-
tion under grant ANI-0088026

In a media streaming P2P architecture, the delivery tree is
built rooted at the source and including all and only the re-
ceivers. A subset of receivers get the content directly from
the source and the others get it from the receivers in the up-
stream. P2P consumes the source’s bandwidth efficiently
by capitalizing a receiver’s bandwidth to provide services
to other receivers. On the other hand, the following issues
are important in designing an efficient P2P technique:	 The end-to-end delay from the source to a receiver may
be excessive because the content may have to go through
a number of intermediate receivers. To shorten this delay
(whereby, increasing the liveness of the media content),
the tree height should be kept small and the join proce-
dure should finish fast. The end-to-end delay may also
be long due to an occurrence of bottleneck at a tree node.
The worst bottleneck happens if the tree is a star rooted at
the source. The bottleneck is most reduced if the tree is
a chain, however in this case the leaf node experiences a
long delay. Therefore, apart from enforcing the tree to be
short, it is desirable to have the node degree bounded.	 The behavior of receivers is unpredictable; they are free
to join and leave the service at any time, thus abandoning
their descendant peers. To prevent service interruption, a
robust technique has to provide a quick and graceful re-
covery should a failure occur.	 For efficient use of network resources and due to the re-
source limitation at each receiver, the control overhead at
each receiver should be small. This is important to the
scalability of a system with a large number of receivers.

We propose a technique called ZIGZAG which ad-
dresses the issues above. ZIGZAG organizes receivers into
a hierarchy of bounded-size clusters and builds the multi-
cast tree based on that. The connectivity of this tree is
enforced by a set of rules, which guarantees that the tree
always has a height O( 
���
���� ) and a node degree O( ��� ),
where � is the number of receivers and � a constant. Fur-
thermore, the effects of network dynamics such as unpre-
dictable receiver behaviors are handled gracefully without
violating the rules. This is achieved requiring a worst-case
control overhead of O( 
���
���� ) for the worst receiver and
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Fig. 1. Administrative organization of peers

O( � ) for an average receiver. Especially, failure recov-
ery can be done regionally with only impact on a constant
number of existing receivers and no burden on the source.
This is an important benefit because the source is usually
overloaded by huge requests from the network. In compar-
ison, no previous solution [5], [6], [7], [8] to our problem
can provide all the above features.

Besides theoretical analyses that prove the correctness
of our scheme, a simulation-based study was carried out to
evaluate its performance under various scenarios. In this
study, we also compared ZIGZAG to SMOP [5], a recent
scheme for P2P streaming.

The remainder of this paper is organized as follows.
Section 2 presents the protocol details of the ZIGZAG
scheme. Section 3 reports the results from our perfor-
mance evaluation study. Section 4 discusses related work
with comparisons to ZIGZAG. Finally, Section 5 con-
cludes this paper with brief remarks.

II. PROPOSED SOLUTION

For the ease of exposition, we refer to the media source
as the server and receivers as clients. They all are referred
to as “peers”. In this section, we propose the ZIGZAG
scheme which consists of two important entities: the ad-
ministrative organization representing the logical relation-
ships among the peers, and the multicast tree representing
the physical relationships among them (i.e., how peers get
the content). Firstly, we describe the administrative orga-
nization when the system is in the stable state. Secondly,
we propose how the multicast tree is built based on this
organization, and then the control protocol in which peers
exchange state information. Finally, we propose policies
to adjust the tree as well as the administrative organiza-
tion upon a client join/departure, and discuss performance
optimization issues.

A. Administrative Organization

An administrative organization is used to manage the
peers currently in the system and illustrated in Fig. 1. Peers

are organized in a multi-layer hierarchy of clusters recur-
sively defined as follows (where � is the number of layers,
��� 3 is a constant):	 Layer 0 contains all peers.	 Peers in layer ������� � are partitioned into clusters of
sizes in [ � , !�� ]. Layer �"�#� has only one cluster which
has a size in [2, !�� ].	 A peer in a cluster at layer �$�%� is selected to be the
head of that cluster. This head becomes a member of layer
� + 1 if �&���'�(� . The server ) is the head of any cluster
it belongs to.

Initially, when the number of peers is small, the admin-
istrative organization has only one layer containing one
cluster. As clients join or leave, this organization will be
augmented or shrunk. The cluster size is upper bounded
by !�� because we might have to split a cluster later when
it becomes oversize. If the cluster size was upper bounded
by *�� and the current size was *���+,� , after the split, the
two new clusters would have sizes � and �-+.� and be prone
to be undersize as peers leave.

The above structure implies � = / ( 
��0
1��� ) where � is
the number of peers. Additionally, any peer at a layer �
�32 must be the head of the cluster it belongs to at ev-
ery lower layer. We note that this hierarchy definition is
not new. It was indeed presented in a similar form in [5].
How to map peers into the administrative organization, to
build the multicast tree based on it, and to update these two
structures under network dynamics are our main contribu-
tion.

We use the following terms for the rest of the paper:	 Member: Non-head peers of a cluster headed by a peer4
are called “members” of

4
.	 Sibling head: A non-head clustermate of a peer

4
at

layer �5� 0 is called a “sibling head” of layer-(� - 1) mem-
bers of

4
.	 Sibling member: Layer-(� -1) members of

4
are called

“sibling members” of any layer-� clustermate of
4

.	 Sibling cluster: The layer-(� -1) cluster of
4

is called a
“sibling cluster” any layer-� clustermate of

4
.

B. Multicast Tree

Unlike in [5], the administrative organization in
ZIGZAG does not infer a data delivery topology. For in-
stance, we will see shortly that the head of a cluster at a
layer �&�6�7�8� does not forward the content to any of its
members as we might think of. In this section, we propose
the rules to which the multicast tree must be confined and
explain the motivation behind that. The join, departure,
and optimization policies must follow these rules. The
rules are listed below (demonstrated by Fig. 2):
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	 A peer, when not at its highest layer, cannot have any
link to/from any other peer. E.g., peer 4 at layer 1 has
neither outgoing nor incoming links.	 A peer, when at its highest layer, can only link to its
sibling members. E.g., peer 4 at layer 2 only links to peers
5, 6, and 7 at layer 1, which are sibling members of 4. The
only exception is the server; at the highest layer, the server
links to each of its members.	 At layer �;�6��� � : since non-head members of a clus-
ter cannot get the content from their head, they must get
it somehow. In our multicast tree, they get the content di-
rectly from one and only one sibling head. E.g., non-head
peers in layer-0 cluster of peer 1 have a link from their sib-
ling head 2; peers 1, 2 and 3 have a link from their sibling
head ) .

It is trivial to prove the above rules guarantee a tree
structure including all the peers. Hereafter, the terms “par-
ent”, “children”, “descendant” are used with the same
meanings as applied for conventional trees. The term
“node” is used interchangeably with “peer” and “client”.

Theorem 1: The worst-case node degree of the multi-
cast tree is O( ��� ).

Proof: A node has at most ( !�� - 1) sibling clusters,
thus having at most ( !�� - 1) < ( !�� - 1) sibling members.
Since a non-server node

4
can only have outgoing links

when
4

is at its highest layer and since these links only
point to a subset of its sibling members, the degree of

4
is

no more than the number of its sibling members, which is
at most ( !�� - 1) < ( !�� - 1). The server also has links to its
members at the highest layer, therefore the server degree is
at most ( !�� - 1) < ( !�� - 1) + ( !�� - 1) = =��>� - !�� . Theorem
1 has been proved.

Theorem 2: The height of the multicast tree is
O( 
���
���� ) where � is the number of peers.

Proof: The longest path from the server to a node
must be the path from the server to some layer-0 node.
The path from the server to any layer-0 node goes through
each layer only once, and does not contain horizontal links
(i.e., links between layer mates) except at the highest layer.
Therefore, the number of nodes on the path is at most the
number of layers � plus one. Since � = O( 
��0
1��� ), the

path length is at most O( 
���
1��� ) + 1. Theorem 2 has been
proved.

The motivation behind not using the head as the par-
ent for its members in the ZIGZAG scheme is as follows1.
Suppose the members of a cluster always get the content
from their head. If the highest layer of a node

4
is � , 4

would have links to its members at each layer, � -1, � -2, ...,
0, that it belongs to. Since � can be � - 1, the worst-case
node degree would be � < ( !�� - 1) = ? ( 
���
1��� ). Fur-
thermore, the closer to the source, the larger degree a node
would have. In other words, the bottleneck would occur
very early in the delivery path. This might not be accept-
able for bandwidth-intensive media streaming.

Our using a sibling head as the parent has another nice
property. Indeed, when the parent peer fails, the head of its
children is still working, thus helping reconnect the chil-
dren to a new parent quickly and easily. We will discuss
this in more detail shortly.

C. Control protocol

To maintain its position and connections in the multicast
tree and the administrative organization, each node

4
in a

layer-� cluster periodically communicates with its layer-�
clustermates, its children and parent on the multicast tree.
For peers within a cluster, the exchanged information is
just the peer degree. If the recipient is the cluster head,

4
also sends a list @ = A [ 4$B , C B ], [

4 � , C � ], .. D , where [
4�E

,
C E ] represents that

4
is currently forwarding the content

to C E peers in the sibling cluster whose head is
4�E

. E.g.,
in Fig. 2, at layer 1, peer 5 needs to send a list A [S, 3], [6,
3] D to the head ) . If the recipient is the parent,

4
instead

sends the following information:	 A Boolean flag FHG0IKJML>ION�
PG ( 4 ): true iff there exists a
path in the multicast tree from

4
to a layer-0 peer. E.g., in

Fig. 2, FHG0IKJMLQIRN�
PG ( S ) = false, FHGTIRJULQIRN�
PG ( V ) = true.	 A Boolean flag WXCYCYION�
PG ( 4 ): true iff there exists a path
in the multicast tree from

4
to a layer-0 peer whose clus-

ter’s size is in [ � , !�� - 1].
The values of FHGTIRJULQIRN�
PG and WXCYCKIRN�
PG at a peer

4
are updated based on the information received from its
children. For instances, if all children send “ FHG0IKJML>ION�
PG
= false” to this peer, then FHGTIRJULQIRN�
PG ( 4 ) is set to false;
WXCYCYION�
PG ( 4 ) is set to true if

4
receives “ WXCYCKIRN�
PG = true”

from at least a child peer.
The theorem below tells that the control overhead for an

average member is a constant. The worst node has to com-
municate with O( 
���
���� ) other nodes, this is however ac-
ceptable since the information exchanged is just soft stateZ

Since a peer gets the content from a sibling head, but not its head,
and can only forward the content to its sibling members, but not its
members, we named our technique ZIGZAG.
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refreshes.
Theorem 3: Although the worst-case control overhead

of a node is O( �[<\
���
���� ), the amortized worst-case over-
head is O( � ).

Proof: Consider a node
4

whose highest layer is
� . 4 belongs to (� + 1) clusters at layers 0, 1, .., � , thus
having at most (� + 1) < ( !�� - 1) members. The number
of children of

4
is its degree, hence no more than =�� � -

!�� . Consequently, the worst-case control overhead at
4

is
upper bounded by (� + 1) < ( !�� - 1) + =�� � - !�� = �$< ( !��
- 1) + =��O� - 1. Since � can be � - 1, the worst-case control
overhead is O( �]<]
���
���� ).

However, the probability that a node has its highest layer
to be � is at most ( ��^��1_ ) / � = �0^���_ . Thus, the amor-
tized worst-case overhead at an average node is at most`badc B
_�egf
h �0^���_\< h �i< h !��j�k�0lb+m=��O�5�k�0lon O( � ) with

asymptotically increasing � . Theorem 3 has been proved.

D. Client Join

The multicast tree is augmented whenever a new client
joins. The new tree must not violate the rules specified in
Section II-B. We propose the join algorithm below.

A new client p submits a request to the server. If the ad-
ministrative organization currently has one layer, p simply
connects to the server. Otherwise, the join request is redi-
rected along the multicast tree downward until finding a
proper peer to join. The below steps are pursued by a peer4

on receipt of a join request (in this algorithm, q ( r )
denotes the currently end-to-end delay from the server ob-
served by a peer r , and C ( r , p ) is the delay from r to p
measured during the contact between r and p ):

1. If
4

is a leaf
1.1. Add p to the only cluster of

4
1.2. Make p a new child of the parent of

4
2. Else
2.1. If WXCYCYION�
PG ( 4 )
2.1.1. Select a child r :

WXCYCKIRN�
PG ( r ) and q ( r )+ C ( r , p ) is min
2.1.2. Forward the join request to r
2.2. Else
2.2.1 Select a child r :

FHGTIRJML>IONs
PG ( r ) and q ( r )+ C ( r , p ) is min
2.2.2. Forward the join request to r
The goal of this procedure is to add p to a layer-0 clustert

and force p to get the content from the parent of non-
head members of

t
. The size of

t
should be in [ � , !�� )

to avoid being oversize. The end-to-end delay is attempted
to be better after each node contact. In Step 2.1.1 or 2.2.1,
p has to contact with at most CYu peers where C1u is the

X X'
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Fig. 3. Split Algorithm

degree of
4

. Since the tree height is O( 
���
1��� ) and the
maximum degree is O( � � ), the number of nodes that p has
to contact is only O( ���5<]
���
���� ). This proves Theorem 4
true.

Theorem 4: The join overhead is O( 
���
1��� ) in terms of
number of nodes to contact.

The join procedure terminates at step 1.2 at some leaf4
, which will tell p about other members of the cluster.
p then follows the control protocol as discussed earlier.
If the new size of the joined cluster is still in [ � , !�� ], no
further work is needed. Otherwise, this cluster has to be
split so that the newly created clusters must have sizes in
[ � , !�� ]. To avoid the overhead of splitting, we propose to
do so periodically, not right after a cluster size becomes
!�� +1. Suppose we decide to split a layer-� (�wv [1, H-2])
cluster2 with a head

4
and non-head peers

4 B
, ..,
4�x

. The
non-head currently get the content from a peer

4zy
and
4

currently gets the content from
4 y y

. Let { E}| be the number
of peers that are both children of

4�E
and layer-(� -1) mem-

bers of
4 |

. Clearly, { E~E = 0 for all � because of the ZIGZAG
tree rules. The split takes several steps (illustrated in Fig.
3):
1. Partition A 4 ,

4 B
, ..,
4�x D into two sets � and � such

that the condition ����� , ������v [ � , !�� ] is satisfied first, and
then

` u����1�R� u������ h { E�| +8{ |�E l is minimized. This condition
is to effortfully reduce the number of peer reconnections
affected by the split. Suppose

4 v]� .
2. For each node

4wE v�� and each node
4 | v%� such

that { E}| � 0, remove all the links from
4wE

to layer-(� -1)
members of

4 |
, and select a random peer in � other than4 |

to be the new parent for these members. Inversely, for
each node

4wE v$� and for each node
4 | v]� such that { E�|

� 0, a similar procedure takes place except that the new
parent must not be peer

4
.

3. Now we need to elect a new head r for cluster � . r is
chosen to be a peer in � with the minimum degree because
we want this change to affect a smallest number of child
peers. r becomes a new member of the cluster at layer-�

The cases where � = 0 or � = � -1 are even easier and can be handled
similarly.
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(� +1) which also contains
4

. Consequently, the children
of r (after Step 2) now cannot get data from r anymore
(due to the rules in Section II-B). For each child cluster
(i.e., cluster whose non-head members used to be children
of r ), we select a peer ���� r in � having the minimum
degree to be the new parent; � must not be the head of this
cluster. Furthermore, the highest layer of r is not layer �
anymore, but layer � +1. Therefore, we remove the current
link from

4]y
to r and add a link from

4]y y
to r . r will

happen to have no children at this moment. This still does
not violate the rules enforcing our multicast tree.

It might happen that the cluster on layer � +1 becomes
oversize due to admitting r . This would have to wait un-
til the next period when the split algorithm will be called.
The split algorithm is run locally by the head of the cluster
to be split. The results will be sent to all peers that need
to change their connections. Since the number of peers
involved in the algorithm is a constant, the computational
time to get out the results is not a major issue. The main
overhead is the number of peers that need to reconnect.
However, the theorem below tells that the overhead is in-
deed very small.

Theorem 5: The worst-case split overhead is O( � � ).
Proof: Step 2 requires

` u������O� u � ��� h { E}| +�{ |�E l peers
to reconnect. This value is at most

` E e xE e B {
E

where { E is
the number of members of

4wE
at layer ����� . Therefore,

Step 2 requires at most �#< ( !�� - 1) ������< ( !�� - 1) to
reconnect.3 In Step 3, the number of former children of
r is less than the number of its sibling members, hence at
most ( !�� - 1) � of them need to reconnect to � . In total,
the split procedure needs at most ���]< ( !�� - 1) + ( !�� - 1) �
nodes to reconnect. Theorem 5 has been proved.

E. Client Departure

The new tree after a client departs must not violate the
rules specified in Section II-B. We propose the algorithm
to handle a client departure below.

Consider a peer
4

who departs either purposely or acci-
dentally due to failure. As a result of the control protocol
described in Section II-C, the parent peer of

4
, all mem-

bers of
4

(if any), and all children of
4

(if any) are aware
of this departure. The parent of

4
needs to delete the link

to
4

. If
4

’s highest layer is layer 0, no further overhead
emerges.

Suppose that
4

’s highest layer is �i� 0. The failure
recovery procedure is exhibited in Fig. 4. For each layer-
(� -1) cluster whose non-head members are children of

4
,

the head r of the cluster is responsible for finding a new
parent for them. r just selects � , a layer-� non-head clus-
�
We would not wait until ���w �¡ to do the split.

X
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Fig. 4. Failure Recovery: Peer ¢ fails

termate, that has the minimum degree, and asks it to for-
ward data to r ’s members at layer � -1.

Furthermore, since
4

used to be the head of � clusters
at layers 0, 1, .., � -1, they must have a new head. This is
handled easily. Let

4]y
be a random member of

4
at layer

0.
4 y

will replace
4

as the new head for each of those
clusters.

4 y
also appears at layer � and gets a link from

the existing parent of
4

. No other change is required. In
overall, a client departure affects a few (at most ( !�� - 1) <
( !�� - 1)) peers at layer � -1 and mostly does not burden the
server. The overhead of failure recovery is consequently
stated as follows:

Theorem 6: In the worst case, the number of peers that
need to reconnect due to a failure is O( �>� ).

As the result of many client departures, a cluster might
become undersize. In this case, it is merged with another
cluster of the same layer. Suppose that � is an undersize
cluster at layer � to be merged with another cluster � . The
simplest way to find � is to find a cluster having the small-
est size. Then, the following steps are taken to do the mer-
gence:
1. The new head of � + � is chosen between the head

4
of � and the head r of � . If r (or

4
) is the head of

4
(or

r ) at the next layer, r (or
4

) will be the new head. In the
other cases, the new head is the one having a larger degree
to reduce the number of children to reconnect (since the
children of the non-chosen must reconnect). Supposing

4
is the new head, r will no longer appear at layer � +1.
2. The new parent of non-head members in � + � is chosen
to be a layer-(� +1) non-head clustermate of

4
and r . This

new parent should currently have the minimum degree.
3. If the existing children of r happen to be � , or that of4

happen to be � , no more work is needed since Step (2)
already handles this case. Otherwise, two possibilities can
happen:
(a)
4

is the head at layer � +1: For each child cluster of
r , a sibling head �#�� r that has the minimum degree will
be the new parent; � must not be the head of this cluster.
(b)
4

is not the head at layer � +1: The new parent for
the existing children of r will be

4
.
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Similar to the split procedure, the merge procedure is
called periodically to reduce overhead. It runs centrally at
the head of � with assistance from the head of � . Since
the number of peers involves is a constant, the computa-
tional complexity should be small. In terms of number
of reconnections, the worst-case overhead is resulted from
the theorem below.

Theorem 7: The worst-case merge overhead is O( �>� ).
Proof: Step 2 requires at most 2 < ( !�� - 1) peers to

reconnect. Step 3 requires at most ( !�� - 1) < ( !�� - 1) peers
to reconnect. In total, no more than ( =��>� - 1) peers need to
reconnect. Theorem 7 has been proved.

F. Performance Optimization

Under the network dynamics, the administrative organi-
zation and multicast tree can be periodically reconfigured
in order to provide better quality of service to clients. Con-
sider a peer

4
, in its highest-layer cluster �$� 0, is busy

serving many children. It might consider switching its par-
enthood of some children to another non-head clustermate
which is less busy. Suppose that

4
currently has links to

sibling clusters
t B

,
t � , ..,

t¤£
, each

t E
having ¥ E non-head

members, respectively. We propose two strategies for han-
dling the refinement: Degree-based Switch and Capacity-
based Switch.

F.1 Degree-based Switch

As a result of the control protocol,
4

knows which
layer-� non-head clustermate has what degree. We denote
the degree of a peer r by CR¦ . The below steps are pursued
by
4

to transfer the service load, attempting to balance the
degree as much as possible:

1. For( � = 1; ��§�¨ ; � ++)
1.1. Select a non-head clustermate r :

r is not the head of
t E

C u - CY¦ - ¥ E � 0
C1u - C ¦ - ¥ E is max

1.2. If such r exists
1.2.3. Redirect non-members of

t E
to r

1.2.4. Update C u and CK¦ accordingly

F.2 Capacity-based Switch

It is likely that peers have different bandwidth capaci-
ties. In this case, we define the busyness of a peer

4
to

be ©«ª¬ ª where ­ u is the bandwidth capacity of peer
4

.
4

follows the steps below to transfer the service load:

1. For( � = 1; ��§�¨ ; � ++)
1.1. Select a non-head clustermate r :

r is not the head of
t E

( ©«ª¬ ª - ©«®¬ ® ) � - ( ©«ª c°¯ �¬ ª - ©«®g± ¯ �¬ ® ) �²� 0

( © ª¬ ª - © ®¬ ® ) � - ( © ª c°¯ �¬ ª - © ® ± ¯ �¬ ® ) � is max
1.2. If such r exists
1.2.3. Redirect non-members of

t E
to r

1.2.4. Update C1u and C ¦ accordingly

The capacity-based switch attempts to balance the peer
busyness among all non-head peers of a cluster. In order to
work with this strategy, a peer must have knowledge about
not only a clustermate degree but also its bandwidth capac-
ity. This is feasible by requiring the exchanged soft-state
information to include both degree and bandwidth capac-
ity.

The performance optimization procedure makes the ser-
vice load fairly distributed among the peers without violat-
ing the multicast tree rules. However, frequently calling it
might cause many peer reconnections, which would affect
the continuity of client playback. To prevent this in the
case of degree-based switch, 4 a peer runs the optimization
procedure when its degree becomes larger than ³ chosen
as follows. We consider a layer-� (0 �8�$�#� -1) cluster
with non-head members

4�B
,
4 � , ..,

4 x
. The total number

of their children must equal the total number of their layer-
(� -1) non-head members (due to the rules enforced on the
multicast tree). Let this quantity be � y . Clearly, � y v [( � -
1)( � +1), ( !�� -1)( � +1)]. If all

4 E
’s are balanced in service

load, the average degree will be approximately � y / �\v [( � -
1)(1+1/( !�� -1)), ( !�� -1)(1+1/ � )] v ( � -1, !�� +3). Therefore,
we can choose ³ = 2 < ( !�� +3).

III. PERFORMANCE EVALUATION

The last section provided the worst-case analyses of
ZIGZAG. To investigate its performance under various
scenarios, we carried out a simulation-based study. Be-
sides evaluating performance metrics mentioned in the
previous sections, i.e., peer degree, join/failure overhead,
split/merge overhead, and control overhead, we also con-
sidered Peer Stretch and Link Stress (defined in [3]). Peer
Stretch is the ratio between the length of the data path from
the server to a peer in our multicast tree to the length of the
shortest path between them in the underlying network. The
dedicated-unicast approach always has the optimal peer
stretch. The stress of a link is the number of times the
same packet goes through that link. An IP Multicast tree
always has the optimal link stress of 1 because a packet
goes through a link only once. An application-level mul-
ticast scheme should have small stretch and stress to keep
the end-to-end delay short and the network bandwidth ef-
ficiently utilized.

We used the GT-ITM Generator [9] to create a 3240-
node transit-stub graph as our underlying network topol-´

The case of capacity-based switch can be handled similarly.
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Fig. 5. 2000 Joins: Join and Split Overhead

ogy. The server’s location is fixed at a stub-domain node.
We investigated our system with 2000 clients located ran-
domly among the other stub-domain nodes. Therefore, the
client population accounts for 2000/3240 = 62% of the en-
tire network. We set the value � to 5, hence each cluster
has at most 15 and no less than 5 peers. We studied three
scenarios, the first investigating a failure-free ZIGZAG
system, the second investigating a ZIGZAG system allow-
ing failures, and the third comparing ZIGZAG to SMOP.
The performance optimization procedure was disabled in
ZIGZAG. 5 We report the results in the following sections.

A. Scenario 1: No Failure

In this scenario, as 2000 clients joined the system, we
collected statistics on control overhead, node degree, peer
stretch, and link stress. We also estimated the join over-
head and split overhead accumulated during the joins.

The overhead of a join is measured as the number of
peers that the new client has to contact before being added
to the multicast tree. Fig. 5(a) shows that on the average,
a new client needs to contact 48 clients, only 2.4% of the
client population. In the worst case, a new client has to
contact 115 clients, or 5.7% of the population. It is inter-µ

We did study the case where the performance optimization was en-
abled in ZIGZAG and the results were significantly improved. How-
ever, to avoid any bias in comparison with SMOP, only the study with
performance optimization disabled is reported in this paper.

esting that the worst case occurs early when there are only
136 clients in the system. This is because, at this moment,
the server has too many children and a new client has to
ask all of them, thus resulting in many contacts. How-
ever, it becomes a lot better then (we can see a “downfall”
right after the 136th join in Fig. 5(a)). This is understand-
able since the split procedure takes place after detecting a
cluster at the second-highest layer is oversize. As the re-
sult of this split, the server will have very few children.
We can see the correlation between the join procedure and
split procedure from Fig. 5(a) and Fig. 5(b). Each run of
the split procedure helps reduce the overhead incurred by
a client join. The two “downfalls” in Fig. 5(a) corresponds
to the two peak points in Fig. 5(b). We can conjecture that
the join-overhead curve would continue going up slowly
as more clients join until a constant point (e.g., when over-
head approximates 90) when it would fall down to a very
low value (e.g, overhead approximates 20). This behavior
would repeat, making the join algorithm scalable with the
client population.

In terms of split overhead, since we wanted to study the
worst scenario, we opted to run a split whenever detecting
a cluster is oversize. However, as illustrated in Fig. 5(b),
small split overhead is incurred during the joins of 2000
clients. The worst case requiring 136 reconnections is
when the server is overloaded by many children, but after
splitting, the server bottleneck is resolved very well (we
can see the two downfalls in Fig. 5(a), which are conse-
quences of the 16th and 166th splits.) Hence, most of the
time, a split requires about 5 peers, or 0.25% of client pop-
ulation, to reconnect. Although our theoretical analysis in
Section II-D shows a worst-case split overhead of O( � � ),
the real result turns out to be a lot smaller than this bound.

Fig. 6(a) shows that not only the node degrees in a
ZIGZAG multicast tree are small, but also they are quite
balanced. The thick line at the bottom represents the de-
grees of the leaves, which are 0-degree. For those peers
forwarding the content to other, they forward to about
10 other peers. This study shows that ZIGZAG handles
peer bottleneck efficiently, and distributes the service load
among the peers fairly. In the worst case, a peer has to
transmit the content to 22 others, which is tiny to the client
population of 2000 clients. In terms of control overhead,
as shown in Fig. 6(b), most peers have to exchange con-
trol states with only 12 others. The dense area represents
peers at layers close to layer 0 while the sparse area rep-
resents peers at higher layers. Those peers at high layers
do not have a heavy control overhead either; most of them
communicate with around 30 peers, only 1.5% of the pop-
ulation. This can be considered lightweight, taking the fact
that the control information is very small in size.
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Fig. 6. 2000 Clients: Node Degree and Control Overhead

The study on link stress and peer stretch results in Fig. 7.
ZIGZAG has a low stretch of 3.45 for most of the clients,
and a link stress of 4.2 for most of the underlying links
used. Especially, these values are quite fairly distributed.
We recall that the client population in our study accounts
for 62% of the entire network in which a pair of nodes have
a link with a probability of 0.5. Therefore, the results we
got are very promising. We also studied the case where
the number of clients is small (fewer than 100), its results
showed that the stretch was no more than 1.2 on average
and 4.0 in the worst case. The stress was also very small,
less than 2.1 on average and 9.2 in the worst case. Since we
focus on a large client population and due to paper length
restriction, we decided not to show the results for small
P2P networks in this section.

B. Scenario 2: Failure Possible

In this scenario, we started with the system consisting
of 2000 clients, which was built based on the first scenario
study. We let a number (200, 400, .., 1000) of peers fail
sequentially and evaluated the overhead for recovery and
the overhead of mergence during that process. Fig. 8(a)
shows the results for recovery overhead as failures occur.
We can see that most failures do not affect the system be-
cause they happen to layer-0 peers (illustrated by a thick
line at the bottom of the graph). For those failures hap-
pening to higher-layer peers, the overhead to recover each

ZIGZAG (avg=4.244, max=78, std-deviation=7.504)
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Fig. 7. 2000 Clients: Link Stress and Peer Stretch

of them is small and mostly less than 20 reconnections (no
more than 2% of client population). Furthermore, the over-
head to recover a failure does not depend on the number of
clients in the system. On average, the recovery overhead is
always between 0.95 and 0.98, when the system has 1800,
1600, .., and 1000 clients left, respectively. This substanti-
ates our theoretical analysis in Section II-E that the recov-
ery overhead is always bounded by a constant regardless
of the client population size.

In terms of merge overhead, the result is exhibited in
Fig. 8(b). There are totally 62 calls for cluster mergence,
each requiring 11 peers on average to reconnect. In the
worst case, only 17 peers need to reconnect, which ac-
counts for no more than 1.7% of the client population. This
study is consistent with our theoretical analysis in Section
II-E that the merge overhead is always small regardless of
the client population size. Indeed, the final merge call and
the first merge call require the same number (only 10) of
reconnections, even though the system has different num-
bers of clients before those calls take place.

C. Scenario 3: ZIGZAG vs. SMOP

We compared the performances between ZIGZAG and
SMOP. SMOP was recently proposed in [5] as an effi-
cient P2P technique for streaming data. SMOP also or-
ganizes the peers in a hierarchy of bounded-size clusters
as ZIGZAG does. However, SMOP and ZIGZAG are fun-
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Fig. 8. Failure and merge overhead as 1000 peers fail

damentally different due to their own multicast tree con-
struction and maintenance strategies. For example, SMOP
always uses the head of a cluster to forward the content
to the other members, whereas ZIGZAG uses a sibling
head instead. According to the analyses in [5], SMOP
has a worst-case node degree O( 
¶��
K� ), worst-case control
overhead O( 
���
K� ), average control overhead O( � ), and a
worst-case join overhead O( 
���
K� ). Obviously, ZIGZAG
is no worse than SMOP in terms of join overhead and con-
trol overhead. Furthermore, ZIGZAG is significantly bet-
ter than SMOP in terms of node degree. For comparisons
in terms of failure recovery overhead, peer stretch, and link
stress, we report the results drawn from our simulation in
this section.

We worked with the following scenario. The system ini-
tially contained only the server and stabilized after 1000
clients join sequentially. Afterwards, we ran an admission
control algorithm, which is a loop of 1000 runs, each run
letting a client to fail or a new client to join. The proba-
bility that a client fails is · (ranging between 0.2 and 0.8),
thus a new client joins with a probability 1 - · . After the
admission control algorithm stopped, we collected statis-
tics on the trees generated by ZIGZAG and SMOP, respec-
tively. Recovery overhead was measured for each failure
during the period from when the system was initialized to
when it was stopped.

Results on failure overhead are illustrated in Fig. 9.
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Fig. 10. ZIGZAG vs. SMOP: Peer Stretch and Link Stress

By enforcing our distinguishing multicast tree rules,
ZIGZAG’s recovery algorithm is more efficient than that
of SMOP. Indeed, a failure happens to a peer at its highest
layer � in SMOP requires �]< O( � ) peers to reconnect. �
can be the highest layer, thus the worst-case overhead is
? ( 
���
K� ). According to our theoretical analyses, ZIGZAG
requires at most a constant number of reconnections in a
recovery phase, regardless of how many peers are in the
system. Consequently, we can see in Fig. 9 that ZIGZAG
clearly prevails SMOP. We note that the average failure
overhead values for both schemes can be smaller than 1 be-
cause there are many layer-0 peers and their failure would
require zero reconnection.

Fig. 10(a) shows the results of average peer stretch. Re-
call that the peer-stretch metric is defined as the ratio of
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path-length from the server to the client along the overlay
to the direct unicast path. In its join algorithm, ZIGZAG
always tries to keep the distance from the server to the join-
ing client small. Meanwhile, in SMOP’s join algorithm,
distance is also considered, but only between the joining
client and the joined client. This does not guarantee a re-
duced distance between the server and the joining client.
Consequently, average peer stretch of ZIGZAG is better
than that of SMOP.

As shown in Fig. 10(b), the average link stress of
ZIGZAG is slightly better than that of SMOP. This is no
way by accident, but is rooted from the degree bound of
each scheme. The worst case degree is O( �O
¶��
1��� ) in
SMOP, while bounded by O( ��� ) in ZIGZAG. Hence, it
is more likely for SMOP to have many more identical
packets being sent through an underlying link near heavy
loaded peers. In this study, where � = 5 and �¸§ 2000,
the two curves are quite close because 
��0
Y��� is close to
� . If the system runs in a larger underlying network with
many more clients, 
¶��
1��� will be a lot larger than � , and
we can expect that link stress in ZIGZAG will be sharply
better than that in SMOP.

IV. RELATED WORK

Several techniques have been proposed to address the
problem of streaming media on the Internet. Most of them
try to overcome the lack of IP Multicast, which makes
the problem challenging, by implementing the multicast
paradigm at the application layer based on IP Unicast ser-
vices only. They can be categorized into two classes:
overlay-router approach and peer-to-peer approach.

In the overlay-router approach [10], [11], [12], [4], a
number of reliable servers are installed across the network
to act as the software routers with multicast functionality.
These routers are interconnected according to a topology
which forms an overlay for running the services. The con-
tent is transmitted from the source to a set of receivers on a
multicast tree consisting of the overlay routers. A new re-
ceiver joins an existing media stream by connecting to an
overlay router appearing on the delivery path to an exist-
ing receiver. This approach is designed to be scalable since
the receivers can get the content not only from the source,
but also from software routers, thus alleviating bandwidth
demand at the source.

The peer-to-peer (P2P) approach assumes no extra re-
sources such as the dedicated servers mentioned above. A
multicast tree involves only the source and the receivers,
thus avoiding the complexity and cost of deploying and
maintaining extra servers. Since we employ this approach,
we discuss the differences between ZIGZAG and the ex-
isting P2P techniques below.

[6] proposed SpreadIt which builds a single distribu-
tion tree of the peers. A new receiver joins by travers-
ing the tree nodes downward from the source until find-
ing one with unsaturated bandwidth. Spreadit has to get
the source involved whenever a failure occurs, thus vul-
nerable to disruptions due to the severe bottleneck at the
source. Additionally, orphaned peers reconnect by using
the join algorithm, resulting in a long blocking time be-
fore the their service can resume. CoopNet [8] employs
a multi-description coding method for the media content.
In this method, a media signal is encoded several separate
streams, or descriptions, such that every subset of them
is decodable. CoopNet builds multiple distribution trees
spanning the source and all the receivers, each tree trans-
mitting a separate description of the media signal. There-
fore, a receiver can receive all the descriptions in the best
case. A peer failure only causes its descendant peers to
lose a few descriptions. The orphaned are still able to con-
tinue their service without burdening the source. How-
ever, this is done with a quality sacrifice. Furthermore,
CoopNet puts a heavy control overhead on the source since
the source must maintain full knowledge of all distribution
trees. Like CoopNet, PASA [7] also builds multiple dis-
tribution trees to transmit multiple layers of the content.
PASA incurs severe peer bottleneck because the height of
such a tree is forced to be at most 2.

Narada [3], [13] focuses on multi-sender multi-receiver
streaming applications, maintains a mesh among the peers,
and establishes a tree whenever a sender wants to transmit
a content to a set of receivers. Narada only emphasizes on
small P2P networks. Its extension to work with large-scale
networks was proposed in [14] using a two-layer hierarchi-
cal topology. To better reduce cluster size, whereby reduc-
ing the control overhead at a peer, the scheme SMOP in
[5] focuses on large P2P networks by using the multi-layer
hierarchical clustering idea as we do. However, SMOP al-
ways uses the head to forward the content to its members,
thus incurring a high bottleneck of O( 
���
1��� ). Though an
extension could be done to reduce this bottleneck to a con-
stant, the tree height would become O( 
���
1���¹<�
¶��
���� ).
ZIGZAG, no worse than SMOP in terms of the other met-
rics, has a worst-case delay of O( 
��0
R� ) while keeping the
bottleneck bounded by a constant. Furthermore, the fail-
ure recovery overhead in ZIGZAG is upper bounded by a
constant while SMOP requires O( 
¶��
1��� ). All these are a
significant improvement for bandwidth-intensive applica-
tions such as media streaming.

VTrails [15] is a commercial P2P streaming product.
The broadcast source vTCaster automatically creates a tree
structure based on receiver location and connection type.
vTCaster collects packet-level information from each re-
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ceiver, dynamically optimizing the tree in order to serve
those with high-speed connections first and connect re-
ceivers who are close, network-wise (within the same ISP
network, same company, etc.). Since vTCast is the cen-
tral processing server for maintaining the entire tree, it is
doubtful this technique can work efficiently with a large
group of transient receivers. Another streaming product
based on P2P is AllCast [16]. However, it is hard for us
to do a specific comparison with AllCast in the absence of
published information.

V. CONCLUSIONS

We were interested in the problem of streaming live
media in a large P2P network. We focused on a single
source only and aimed at optimizing the worst-case values
for important performance metrics. Our proposed solu-
tion called ZIGZAG uses a novel multicast tree construc-
tion and maintenance approach based on a hierarchy of
bounded-size clusters. The key in ZIGZAG’s design is the
use of a sibling head other than the head of a cluster to
forward the content to the other members of that cluster.
With this key in mind, our algorithms were developed to
achieve the following desirable properties:
	 Short end-to-end delay: The end-to-end delay is not
only due to the underlying network traffic, but largely de-
pends on the local delays at intermediate clients due to
queuing and processing. The local delay at such an in-
termediate client is mostly affected by its bandwidth con-
tention. ZIGZAG keeps the end-to-end delay small be-
cause the multicast tree height is at most logarithm of the
client population and each client needs to forward the con-
tent to at most a constant number of peers.	 Low control overhead: Each client periodically ex-
changes soft-state information only to its clustermates,
parent, and children. Since a cluster is bounded in size
and the client degree bounded by a constant, the control
overhead at a client is small. On average, the overhead is
a constant regardless of the client population.	 Efficient join and failure recovery: A join can be ac-
complished without asking more than O( 
��0
R� ) existing
clients, where � is the client population. Especially, a
failure can be recovered quickly and regionally with a
constant number of reconnections and no affection on the
server.	 Low maintenance overhead: To enforce the rules on the
administrative organization and the multicast tree, mainte-
nance procedures (merge, split, and performance refine-
ment) are invoked periodically with very low overhead.
Fewer than a constant number of clients need to relocate
in such a procedure.

We substantiated the above properties by providing both
theoretical analyses and simulation studies. We also com-
pared ZIGZAG to SMOP [5], a recent P2P streaming
scheme. The results showed that ZIGZAG outperforms
SMOP in terms of most performance metrics.
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APPENDIX

In the current version of ZIGZAG, if a peer
4

is cho-
sen to serve a sibling cluster, there will be a link from

4
to every non-head members of that cluster. Therefore, the
worst-case degree of

4
is O( ��� ). We can reduce this de-

gree to O( � ).
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Indeed, the administrative organization is redefined with
a new concept of “vice-head”. Specifically, each cluster
has a head and a vice-head. Only the head appears at the
next layer as in the old definition. Furthermore, at the high-
est layer, the server plays the role of both the head and the
vice-head of its only cluster. The rules for our multicast
tree will be changed as follows:	 A peer, when not at its highest layer, neither has a link
out nor a link in. The only exception applies for the server;
at its highest layer, the server links to every other member.	 Non-head members of a cluster must receive the content
directly from their vice-head. In other words, this vice-
head links to every other non-head member of the cluster.	 The vice-head of a cluster, except for the server, must get
the content directly from one and only one sibling head.

Instead of linking to all non-members of a sibling cluster
that a peer

4
serves,

4
only needs to link to the vice-head

of that cluster. Therefore, the degree of
4

is significantly
reduced. We can show that while the tree height is still
O( 
���
���� ), the worst-case node degree of the multicast tree
becomes ��� -3, instead of =�� � - !�� as in the initial design of
ZIGZAG. Consequently, the control overhead per peer is
improved. We can also show that the overhead for failure
recovery, split, and merge are improved and the overheads
of the other metrics remain competitive.


