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Abstract  

A finite-state machine (FSM) is an abstract mathematical model of computation used to design both computer 

programs and sequential logic circuits. Considered as an abstract model of computation, the finite state machine 

is weak; it has less computational power than some other models of computation such as the Turing machine. 

This paper overview the finite-state automata based on Deoxyribonucleic Acid (DNA). Such automata uses 

massive parallel processing offered by molecular approach for computation and exhibits a number of advantages 

over traditional electronic implementations. Different implementations of DNA finite state machines are dis-

cusses, such as Restriction Enzymes Finite State Machines, DNAzymes Finite State Machines, and Finite State 

Machines with DNA Polymers. Moreover, a comparison was made to clarify the advantages and disadvantages 

of each kind of presented DNA finite state machines. 
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1. Introduction 

To start with, it is necessary to point out what is 

DNA, its usage in deferent areas of Biocomputing in 

general, and specifically point outwhy it was used in 

finite state machines. DNA (Deoxyribonucleic Acid) 

is a nucleic acid [1], which contains certain genetic 

instructions, used for the functioning of living organ-

isms. DNA computing is fundamentally similar to 

parallel computing in that it takes advantage of the 

many different molecules of DNA to try many dif-

ferent possibilities at once. For certain specialized 

problems, DNA computers are faster and smaller 

than any other computer built so far. Furthermore, 

particular mathematical computations have been 

demonstrated to work on a DNA computer. [2, 3]. 

DNA nanotechnology uses the unique molecular 

recognition properties of DNA and other nucleic ac-

ids to create self-assembling branched DNA com-

plexes with useful properties. DNA is thus used as a 

structural material rather than as a carrier of biologi-

cal information.Researches recently focus on utiliz-

ing biomolecules to develop nanostructures that sim-

ulates some machines functions. Some examples of 

those machines are tweezers, motors and walkers [4]. 

In the case of finite state machines, the segments of 

DNA are carrying the genetic information and this 

function is used in machine implementation [5]. 

Designing and further implementation of correct, 

robust DNA machines is rather difficult because 

there are quite many opportunities for 

unnecessaryintrusion between molecules in this sys-

tem. DNA string displacement was proposed as a 

design paradigm for finite state machines designed 

with DNA, and the DNA strand displacement (DSD) 

[6]programming language was developed as a major 

means of officially programming and analyzing these 

finite machines to check for unnecessary interfer-

ence[7]. 

This paper aims to comparing the different imple-

mentations of finite state machines using DNA, 

showing their differences and their benefits. We 

identify, classify, and discuss different implementa-

tions of DNA finite state machines such as Re-

striction Enzymes Finite State Machines (sec-

tion  4.1), DNAzymes Finite State Machines (sec-

tion  4.2) and Finite State Machines with DNA Poly-

mers (section  4.3). 

This paper is organized as follows. Section  2 pro-

vides a brief description of the finite state machines. 

The history of using DNA in computing is described 

in section  3.In section  4; we compare the different 

DNA finite state machine implementations and some 

examples for using DNA finite state machine in 

building nano-devices like tweezers. In section  5 we 

discuss using finite state machines in modeling and 

analyzing DNA. Finally we make suggestions for 

farther research aspects in section 6. 



Copyright © 2013 IJCSIT.                                            A. ESHRA and A. EL-SAYED 

11                                 International Journal of Computing Science and Information www.ijcsit.org` 

                             Vol. 01, issue 01, January 2013 

2. Finite State Machines 

A Turing machine[8], the origin of finite state au-

tomata, is a model of computation, to represent and 

perform a given computation. Turing machines are 

automatically equivalent to many other models of 

computation like cellular automata, neural networks, 

and digital computers. It is believed that Turing ma-

chines embody what is meant by something is com-

putable. Anything can be computed by a Turing ma-

chine if a procedure or an algorithm can be written 

for it. 

Finite state automata are significant in many dif-

ferent areas, including electrical engineering, linguis-

tics, computer science, philosophy, biology, mathe-

matics, and logic. Finite state machines are a class of 

automata studied in automata theory and the theory 

of computation[9]. In computer science, finite state 

machines are widely used in modeling of application 

behavior, design of hardware digital systems, soft-

ware engineering, compilers, network protocols, and 

the study of computation and languages. An example 

of a finite state machine is given in Figure 1. 

 

Figure 1: Example of a finite-state machine for binary 

divisibility by 3 

This is a FSM that accepts strings formed with in-

put alphabet {0, 1}. It accepts exactly those strings 

that are a numeral representing a multiple of 3 in 

binary, least-significant digit first. For example: the 

accepted strings include:  0, 11, 110, 1001, 1100, 

1111, 10010 ... etc. 

3. Earlier work with DNA in Computer 
Engineering 

Adelman demonstrated how the actual mecha-

nisms underlying recombination and separation of 

DNA carry computations significant to human en-

deavours[10], such as solving examples of the 

HAMILTONIAN PATH problem [10]. The tech-

nique to use them to carry out computation consists 

of three main steps: (1)encoding that represents the 

problem onto DNA strings[11], 

(2)hybridization/ligation that performs the processing 

of the main core and (3)extraction that makes the 

results evident and noticeable to the naked eye [12].  

The biggest part of research is now being done to 

comprehend the reliability and feasibility of the tech-

niques for pushing the restrictions of viable computa-

tion, a very important step in its development. One 

more research in this sphere attempts to characterize 

the power of computations of DNA. The starting 

point of such research was naturally, the evaluation 

and comparison with the standard computational 

framework, which is provided by Turing machines 

and classical computation[13]. It is clear that, even if 

DNA is capable to process information in ways that 

may not be captured by Turing’s framework, in 

means or effectiveness[14]. Establishing the limits of 

DNA’s power of computing requires the dual ap-

proach of mapping Turing computability and com-

plexity into computing of DNA [15]. 

4. DNA Implementation of Finite-State 
Machines 

In[16], as taken to be under discussion, the authors 

state that the basic information processing capabili-

ties of DNA based reactions have been properly ex-

plored at the upper end of the computability spectrum 

using splicing systems and establishing computation 

universality. They investigated the information pro-

cessing capabilities and competence of DNA com-

putations from the other end by giving two different 

kinds of implementations of the simplest nontrivial 

information processingmodel,the finite-state ma-

chine[17]. A ligation-based approach permits input 

ofarbitrary length and can be readily implemented 

with present biotechnology, but requires sequential 

input feed anddifferent moleculesfordifferent ma-

chines[18]. Ina second implementation not based on 

ligation, transitions are representedby the reusable 

molecules, and the input, coded as amolecule, can be 

introduced at once[19].Both implementations allow 

optical extraction of the status of thefinite ma-

chine[12]. 

The authors of the article[16] and the researchers 

who conducted investigations state that in question of 

DNA designed finite machines, from the practical 

viewpoint, more significant still, is to recognize the 

variety of feasible tasks that DNA computing can 

perform competently and reliably under realistic as-

sumption the chemical environments where the DNA 

computations are taking place. Several algorithms 

such as binary arithmetic [20], real-valued multipli-

cation [21,22], breadth-first search [23]. And dy-

namic programming [24] were actively implemented 

using DNA. 

Inthe article under discussion,the authorstooka 

different courseof action torealizingthereal power of 

DNA computing byinvestigating itsrelationswiththe 

classes of low level complexity. Inparticular, the 

researchersexploretherecognition of regular lan-

guages, awell-known andproperly realizedcomplexity 

classwith agreat variety and wide 

rangeofverypracticalapplications.In the article it is 

shown that two main implementations of DNA are 
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realistic and can be competently implemented in 

vitro[25, 26].The designs in the article under discus-

sion are intended to serve as a generic algorithm for 

implementation of a deterministic finite state ma-

chine (FSM) using DNA processes[25]. 

4.1. Restriction Enzymes Finite State 
Machines 

In [25], the authors managed to build programma-

ble finite machines including DNA and 

DNA-manipulating enzymes that are able to solve 

computational problems autonomously. The hard-

ware of machine consists of a restriction nuclease 

and ligase; double-stranded DNA encodes software 

and input, moreover, it contains programming 

amounts to selecting suitable software molecules. By 

mixing solutions containing those components, the 

machine processes the input molecule through a flow 

of restriction, hybridization and ligation cycles, thus 

it produces detectable output molecule, which en-

codes the final state of machine, and therefore com-

putational result. The machine hardware consists of a 

mixture of the class IIS restriction nuclease FokI, T4 

DNA ligase and ATP, while the software comprises 

eight short double-stranded (ds) DNA molecules, the 

`transition molecules', which encode all possible 

transition rules.  

In [27] two new models are presented for finite 

state machine implementation with DNA. The opera-

tions used in both models are simple and easy to im-

plement. Operations include immobilization of DNA 

strands onto paramagnetic beads, DNA hybridiza-

tion, DNA ligation and restriction enzyme cleavage. 

In the first model, the size of the molecules repre-

senting the finite state control depends on the length 

of the input string. In the second model, obstacles 

caused by increasing lengths of the input string are 

discarded. Adding an enzymatic reaction to the oper-

ations of the first model, resulted in remaining the 

length of the DNA attached to the beads unchanged 

before and after each step of the algorithm and, 

therefore, it remains independent of the length of the 

input string.  

There are certain restrictions of enzyme usage 

while implementation of DNA finite state machines. 

When two ends annealed another enzyme, DNA lig-

ase, may be applied. The cuts in the backbone are 

repaired by means of DNA ligase and long piece of 

double-stranded DNA is created. In [28] the author 

proposed an encoding for a Turing machine transi-

tion table in DNA and series of restrictions and liga-

tions. The author claims that every operation can be 

performed using commercially available restriction 

enzymes and ligases. That claim goes to the invoking 

imaginary enzymes to perform the state-symbol tran-

sitions in Charles Bennett’s DNA based Turing ma-

chines. 

4.2. DNAzymes Finite State Machines 

DNA-based synthetic molecular devices are rela-

tively simple to design and engineer, because of the 

predictable secondary structure of DNA nanostruc-

tures and the good biochemistry used to control DNA 

nanostructures. Though, ideally the designers try to 

minimize the use of protein enzymes in DNA-based 

synthetic molecular device design. Therefore, a class 

of DNA-based molecular devices using DNAzymes 

is presented in [26]. These DNAzymes-based devices 

are independent, programmable, and do not require 

protein enzymes. The DNAzymes-based designs 

presented in that research [26] are: finite state au-

tomaton, DNAzymes FSA (it performs finite state 

transitions using DNAzymes); extensions to it in-

cluding probabilistic automaton and 

non-deterministic automaton, and its application as a 

DNAzymes router for programmable routing of 

nanostructures on a 2D DNA addressable network. 

It is clear that smart nano-mechanical devices op-

erating in an autonomous way interests numerous 

scientists. Recent successes in creating DNA 

nano-structures of large scale, in constructing DNA 

machines, provide a solid foundation for the next 

step forward: creating autonomous DNA mechanical 

devices capable of arbitrarily compound behavior. 

One prototype system in the direction of this objec-

tive can be autonomous DNA mechanical device 

competent for universal computation, by imitating 

the actions of universal Turing machine. Building on 

a previous work of [29]’s authors, as a theoretical 

design and prototype experimental construction of an 

autonomous unidirectional DNA walking device 

moving along a linear track, the authors  presented 

the design of a nano-mechanical DNA device that 

autonomously mimics the operation of a 2-state 

5-color universal Turing machine. The autonomous 

nano-mechanical device, called an Autonomous 

DNA Turing Machine, is thus capable of universal 

computation and hence complex translational motion, 

which is defined as universal translational motion. 

4.3. Finite State Machines with DNA 
Polymers 

In [30]the authors propose a chemical implemen-

tation of stack machines — a Turing-universal model 

of computation similar to Turing machines- using 

DNA strand displacement cascades as the underlying 

chemical primitive. More specifically, the mecha-

nism they described is the addition and removal of 

monomers (single unjoined organic molecules) from 

the end of a DNA polymer, controlled by strand dis-

placement logic. Bennett’s proposed chemical Turing 

machine[31] is one of the most important thought 

experiments in the study of the thermodynamics of 

computation. Yet the sophistication of molecular 

engineering required to physically construct Ben-
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nett’s hypothetical polymer substrate and enzymes 

has prevented experimental implementations. The 

authors contributed also in capturing the motivating 

feature of Bennett’s scheme: that physical reversibil-

ity corresponds to logically reversible computation, 

and arbitrarily little energy per computation step is 

required. Further, as a method of embedding logic 

control into chemical and biological systems, poly-

mer-based chemical computation is significantly 

more efficient than geometry-free chemical reaction 

networks. However their construction lacks the at-

tractive feature of material recycling. Yet, in their 

scheme, different fuel molecules would be used in 

the “compute” and “retrace” phases of the trans-

formed Turing machine computation, and would not 

be regenerated. 

In [32] the authors overview a series of their re-

search on implementing finite automata in vitro and 

in vivo in the framework of DNA-based computing. 

First, they employ the length-encoding technique 

presented in [33, 34] to implement finite automata in 

test tube. In the length-encoding method, the states 

and state transition functions of a target finite autom-

aton are effectively encoded into DNA sequences, a 

computation (accepting) process of finite automata is 

accomplished by self-assembly of encoded comple-

mentary DNA strands, and the acceptance of an input 

string is determined by the detection of a completely 

hybridized double-strand DNA. Secondly, they re-

port their intensive in vitro experiments in which 

they have implemented and executed several fi-

nite-state automata in test tube. They have carried 

laboratory experiments on various finite automata of 

from 2 states to 6 states for several input strings.  

4.4. Using DNA FSM to build nano-devices 

As an application for the DNAzymes Finite state 

machine discussed earlier, in [26] the authors pro-

posed a DNAzymes router for programmable routing 

of nanostructures on a 2D DNA addressable lattice. 

Furthermore, they gave a medical-related application, 

DNAzymes doctor that provide transduction of nu-

cleic acid expression: it can be programmed to re-

spond to the under-expression or over-expression of 

various strands of RNA, with a response by release 

of RNA. 

DNA finite state automata can be used to build 

DNA tweezers. In [35] the authors built three DNA 

tweezers that are activated by the inputs H+/OH-; 

Hg2+/cysteine; nucleic acid linker/complementary 

anti-linker to yield a 16-states finite-state automaton. 

The outputs of the automata are the configuration of 

the respective tweezers (opened or closed) deter-

mined by observing fluorescence from a 

fluorophore/quencher pair at the end of the arms of 

the tweezers. The system exhibits a memory because 

each current state and output depends not only on the 

source configuration but also on past states and in-

puts. 

5. Using Finite state machines in 
modelingand Analyzing DNA 

Another direction of using DNA finite state ma-

chines is to train a FSM as a good/bad classifier for 

PCR (polymerase chain reaction) primers [36]. PCR 

primers are short sequences of DNA used in a reac-

tion that amplifies other DNA. PCR amplification of 

DNA underlies a multitude of technologies from fo-

rensic DNA fingerprinting to genetic mapping. The 

system presented in [36] is a post-production add-on 

to a standard primer picking program intended to 

compensate for organism and lab specific factors. 

In [37] a project presents an updated method for 

classification of PCR primers in mice using finite 

state classifiers. Five different evolutionary algo-

rithms that use an incremental fitness reward are used 

for training these classifiers.  

Recently Finite state machines can be used to im-

prove modeling and analysis of DNA properties and 

protein structure. In [38] the authors extends an early 

study on discrete events system formulations of DNA 

hybridization, and focuses discussions on gene muta-

tion in Molecular Biology. Key concepts and ana-

lyzing the process related to those phenomena can be 

expressed by applying FSM theory.  

6. Discussion 

In Shapiro’s restriction enzymes model applica-

tion[25], the researchers implemented 1012 automa-

ta, sharing the same software, run independently and 

in parallel on inputs at a combined rate of 109 transi-

tions per second with transition fidelity greater than 

99.8%, consuming less than 10-10 W. However, in 

Shapiro’s model it is noticed that final detection re-

mains labor intensive and it contains programming 

amounts to selecting suitable software molecules. 

In Nowzari’s models [27], the use of paramagnetic 

beads greatly reduces performance time and demon-

strates DNA chip compatibility of the models. In one 

of the models, the lengths of DNA strands created 

during the intermediate operations are independent of 

the length of the input string. The three operations 

used in the first algorithm, ligation, hybridization and 

optical extraction, are all very simple. Also, the use 

of biotin labeled DNA and streptavidin-coated para-

magnetic beads allows each cycle to be performed 

within minutes manually. However, a very attractive 

feature of the system is its automation, which would 

allow hundreds of thousands input sequences to be 

analyzed simultaneously and rapidly. Finally, the two 

models are simple models to implement in the labor-

atory. The implementations of both models can be 

further made fault-tolerant and can be easily used for 
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implementing nondeterministic models. Optical ex-

traction in both models detects the final state which 

can be considered much easier than Shapiro’s result 

detection. 

In Rothemund’s proposal [28], the researchers as-

signed real DNA sequences to their schematic that 

could be used with commercially available enzymes 

to implement a Turing machine in lab. They recog-

nized that the Turing machine model, while useful 

for proving theoretical results, may be too slow to do 

any practical computation. This proposal can be con-

sidered as an open a door for other researchers to 

come up with a series of operations from which one 

can build a practical universal molecular computer. 

The DNAzymes-based devices are independent, 

programmable, do not require protein enzymes, and 

allow for the execution of multiple state transitions. 

In the DNAzymes FSA, the number of DNAzymes 

required is proportional to the number of transitions 

in the automata. For binary-coded inputs the number 

of transitions is proportional to number of states. 

However, the implementation of finite state machines 

that do not have a planar layout might be challeng-

ing. 

Different architectures for molecular computing 

such as algorithmic self-assembly, circuits imple-

mented with chemical reaction networks (CRNs). 

Turing machines implemented with CRNs and poly-

mer CRNs embody different tradeoffs between time, 

volume, energy and uniformity. In [30] the proposed 

construction is exponentially more efficient in terms 

of the required molecular counts and volume than 

geometry-free Turing-universal computation using 

strand displacement reactions, and also polynomially 

faster. Moreover, their polymer CRNconstruction in 

theory yields the correct computation output with 

probability 1. However, the construction lacks the 

attractive feature of material recycling. 

Another direction takes the DNA FSM to improve 

primer design performance by using machine learn-

ing as a latch on post-processing to capture features 

of primer performance not related directly to the 

DNA biophysics already implanted in primer-picking 

packages. The technique applied in [36] appears to 

have yielded improved performance.In [37] updating 

methods of PCR primers classifications can com-

pensate for many lab, organism and chemical specific 

factors that are costly. Using Finite State Classifiers 

can help decrease the number of primers that fail to 

amplify correctly. By controlling the fitness reward 

correctly, there is a potential to develop classifiers 

with a high probability of accepting only good pri-

mers.Modeling and analysis of DNA properties and 

protein structure can be improved also by using finite 

state machines. In [38]the researchers managed to 

mathematically represent and interpret metabolism 

and the effects to structures of protein macro mole-

cule caused by gene mutation. 

7. Conclusion 

FSA has been challenging for conventional com-

puters, in its programming and in its execution. The 

bigger the machine becomes the more execution time 

it costs. On the other hand, DNA has proved to have 

the ability of massive parallelism. So in the last few 

years, many approaches have been presented to use 

DNA in solving many computational problems in-

cluding FSA. Three approaches have been discussed 

in this article with their pros and cons. The ap-

proaches are: Restriction Enzymes FSMs, 

DNAzymes FSMs, and DNA Polymers FSMs. After 

this comparison, we decided to go with DNAzymes 

FSM, make a design and experience it in the wet lab. 
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