
International Journal of Computing Science and Information Technology, 2013, Vol. 01 (01), 10-16

ISSN: 2278-9669, January 2013 (http://ijcsit.org)

`10 International Journal of Computing Science and Information www.ijcsit.org

 Vol. 01, issue 01, January 2013

Finite state machines implementation using DNA

Techniques

Abeer ESHRA
Computer Science & Eng. Dept., Faculty of Electronic Eng., Menoufiya University, 32952 Menouf, Egypt.

abeerabdelazeez@hotmail.com

Ayman EL-SAYED (IEEE Senior Member)
Computer Science & Eng. Dept., Faculty of Electronic Eng., Menoufiya University, 32952 Menouf, Egypt.

ayman.elsayed@el-eng.menofia.edu.eg

Abstract

A finite-state machine (FSM) is an abstract mathematical model of computation used to design both computer

programs and sequential logic circuits. Considered as an abstract model of computation, the finite state machine

is weak; it has less computational power than some other models of computation such as the Turing machine.

This paper overview the finite-state automata based on Deoxyribonucleic Acid (DNA). Such automata uses

massive parallel processing offered by molecular approach for computation and exhibits a number of advantages

over traditional electronic implementations. Different implementations of DNA finite state machines are dis-

cusses, such as Restriction Enzymes Finite State Machines, DNAzymes Finite State Machines, and Finite State

Machines with DNA Polymers. Moreover, a comparison was made to clarify the advantages and disadvantages

of each kind of presented DNA finite state machines.

Keywords:: Finite state automata, DNA computing, DNAzymes, Restriction enzymes

1. Introduction

To start with, it is necessary to point out what is

DNA, its usage in deferent areas of Biocomputing in

general, and specifically point outwhy it was used in

finite state machines. DNA (Deoxyribonucleic Acid)

is a nucleic acid [1], which contains certain genetic

instructions, used for the functioning of living organ-

isms. DNA computing is fundamentally similar to

parallel computing in that it takes advantage of the

many different molecules of DNA to try many dif-

ferent possibilities at once. For certain specialized

problems, DNA computers are faster and smaller

than any other computer built so far. Furthermore,

particular mathematical computations have been

demonstrated to work on a DNA computer. [2, 3].

DNA nanotechnology uses the unique molecular

recognition properties of DNA and other nucleic ac-

ids to create self-assembling branched DNA com-

plexes with useful properties. DNA is thus used as a

structural material rather than as a carrier of biologi-

cal information.Researches recently focus on utiliz-

ing biomolecules to develop nanostructures that sim-

ulates some machines functions. Some examples of

those machines are tweezers, motors and walkers [4].

In the case of finite state machines, the segments of

DNA are carrying the genetic information and this

function is used in machine implementation [5].

Designing and further implementation of correct,

robust DNA machines is rather difficult because

there are quite many opportunities for

unnecessaryintrusion between molecules in this sys-

tem. DNA string displacement was proposed as a

design paradigm for finite state machines designed

with DNA, and the DNA strand displacement (DSD)

[6]programming language was developed as a major

means of officially programming and analyzing these

finite machines to check for unnecessary interfer-

ence[7].

This paper aims to comparing the different imple-

mentations of finite state machines using DNA,

showing their differences and their benefits. We

identify, classify, and discuss different implementa-

tions of DNA finite state machines such as Re-

striction Enzymes Finite State Machines (sec-

tion 4.1), DNAzymes Finite State Machines (sec-

tion 4.2) and Finite State Machines with DNA Poly-

mers (section 4.3).

This paper is organized as follows. Section 2 pro-

vides a brief description of the finite state machines.

The history of using DNA in computing is described

in section 3.In section 4; we compare the different

DNA finite state machine implementations and some

examples for using DNA finite state machine in

building nano-devices like tweezers. In section 5 we

discuss using finite state machines in modeling and

analyzing DNA. Finally we make suggestions for

farther research aspects in section 6.

Copyright © 2013 IJCSIT. A. ESHRA and A. EL-SAYED

11 International Journal of Computing Science and Information www.ijcsit.org`

 Vol. 01, issue 01, January 2013

2. Finite State Machines

A Turing machine[8], the origin of finite state au-

tomata, is a model of computation, to represent and

perform a given computation. Turing machines are

automatically equivalent to many other models of

computation like cellular automata, neural networks,

and digital computers. It is believed that Turing ma-

chines embody what is meant by something is com-

putable. Anything can be computed by a Turing ma-

chine if a procedure or an algorithm can be written

for it.

Finite state automata are significant in many dif-

ferent areas, including electrical engineering, linguis-

tics, computer science, philosophy, biology, mathe-

matics, and logic. Finite state machines are a class of

automata studied in automata theory and the theory

of computation[9]. In computer science, finite state

machines are widely used in modeling of application

behavior, design of hardware digital systems, soft-

ware engineering, compilers, network protocols, and

the study of computation and languages. An example

of a finite state machine is given in Figure 1.

Figure 1: Example of a finite-state machine for binary

divisibility by 3

This is a FSM that accepts strings formed with in-

put alphabet {0, 1}. It accepts exactly those strings

that are a numeral representing a multiple of 3 in

binary, least-significant digit first. For example: the

accepted strings include: 0, 11, 110, 1001, 1100,

1111, 10010 ... etc.

3. Earlier work with DNA in Computer
Engineering

Adelman demonstrated how the actual mecha-

nisms underlying recombination and separation of

DNA carry computations significant to human en-

deavours[10], such as solving examples of the

HAMILTONIAN PATH problem [10]. The tech-

nique to use them to carry out computation consists

of three main steps: (1)encoding that represents the

problem onto DNA strings[11],

(2)hybridization/ligation that performs the processing

of the main core and (3)extraction that makes the

results evident and noticeable to the naked eye [12].

The biggest part of research is now being done to

comprehend the reliability and feasibility of the tech-

niques for pushing the restrictions of viable computa-

tion, a very important step in its development. One

more research in this sphere attempts to characterize

the power of computations of DNA. The starting

point of such research was naturally, the evaluation

and comparison with the standard computational

framework, which is provided by Turing machines

and classical computation[13]. It is clear that, even if

DNA is capable to process information in ways that

may not be captured by Turing’s framework, in

means or effectiveness[14]. Establishing the limits of

DNA’s power of computing requires the dual ap-

proach of mapping Turing computability and com-

plexity into computing of DNA [15].

4. DNA Implementation of Finite-State
Machines

In[16], as taken to be under discussion, the authors

state that the basic information processing capabili-

ties of DNA based reactions have been properly ex-

plored at the upper end of the computability spectrum

using splicing systems and establishing computation

universality. They investigated the information pro-

cessing capabilities and competence of DNA com-

putations from the other end by giving two different

kinds of implementations of the simplest nontrivial

information processingmodel,the finite-state ma-

chine[17]. A ligation-based approach permits input

ofarbitrary length and can be readily implemented

with present biotechnology, but requires sequential

input feed anddifferent moleculesfordifferent ma-

chines[18]. Ina second implementation not based on

ligation, transitions are representedby the reusable

molecules, and the input, coded as amolecule, can be

introduced at once[19].Both implementations allow

optical extraction of the status of thefinite ma-

chine[12].

The authors of the article[16] and the researchers

who conducted investigations state that in question of

DNA designed finite machines, from the practical

viewpoint, more significant still, is to recognize the

variety of feasible tasks that DNA computing can

perform competently and reliably under realistic as-

sumption the chemical environments where the DNA

computations are taking place. Several algorithms

such as binary arithmetic [20], real-valued multipli-

cation [21,22], breadth-first search [23]. And dy-

namic programming [24] were actively implemented

using DNA.

Inthe article under discussion,the authorstooka

different courseof action torealizingthereal power of

DNA computing byinvestigating itsrelationswiththe

classes of low level complexity. Inparticular, the

researchersexploretherecognition of regular lan-

guages, awell-known andproperly realizedcomplexity

classwith agreat variety and wide

rangeofverypracticalapplications.In the article it is

shown that two main implementations of DNA are

0

0 1 2

0

0

1

1

1

A. ESHRA and A. EL-SAYED Copyright © 2013 IJCSIT.

12 International Journal of Computing Science and Information www.ijcsit.org

 Vol. 01, issue 01, January 2013

realistic and can be competently implemented in

vitro[25, 26].The designs in the article under discus-

sion are intended to serve as a generic algorithm for

implementation of a deterministic finite state ma-

chine (FSM) using DNA processes[25].

4.1. Restriction Enzymes Finite State
Machines

In [25], the authors managed to build programma-

ble finite machines including DNA and

DNA-manipulating enzymes that are able to solve

computational problems autonomously. The hard-

ware of machine consists of a restriction nuclease

and ligase; double-stranded DNA encodes software

and input, moreover, it contains programming

amounts to selecting suitable software molecules. By

mixing solutions containing those components, the

machine processes the input molecule through a flow

of restriction, hybridization and ligation cycles, thus

it produces detectable output molecule, which en-

codes the final state of machine, and therefore com-

putational result. The machine hardware consists of a

mixture of the class IIS restriction nuclease FokI, T4

DNA ligase and ATP, while the software comprises

eight short double-stranded (ds) DNA molecules, the

`transition molecules', which encode all possible

transition rules.

In [27] two new models are presented for finite

state machine implementation with DNA. The opera-

tions used in both models are simple and easy to im-

plement. Operations include immobilization of DNA

strands onto paramagnetic beads, DNA hybridiza-

tion, DNA ligation and restriction enzyme cleavage.

In the first model, the size of the molecules repre-

senting the finite state control depends on the length

of the input string. In the second model, obstacles

caused by increasing lengths of the input string are

discarded. Adding an enzymatic reaction to the oper-

ations of the first model, resulted in remaining the

length of the DNA attached to the beads unchanged

before and after each step of the algorithm and,

therefore, it remains independent of the length of the

input string.

There are certain restrictions of enzyme usage

while implementation of DNA finite state machines.

When two ends annealed another enzyme, DNA lig-

ase, may be applied. The cuts in the backbone are

repaired by means of DNA ligase and long piece of

double-stranded DNA is created. In [28] the author

proposed an encoding for a Turing machine transi-

tion table in DNA and series of restrictions and liga-

tions. The author claims that every operation can be

performed using commercially available restriction

enzymes and ligases. That claim goes to the invoking

imaginary enzymes to perform the state-symbol tran-

sitions in Charles Bennett’s DNA based Turing ma-

chines.

4.2. DNAzymes Finite State Machines

DNA-based synthetic molecular devices are rela-

tively simple to design and engineer, because of the

predictable secondary structure of DNA nanostruc-

tures and the good biochemistry used to control DNA

nanostructures. Though, ideally the designers try to

minimize the use of protein enzymes in DNA-based

synthetic molecular device design. Therefore, a class

of DNA-based molecular devices using DNAzymes

is presented in [26]. These DNAzymes-based devices

are independent, programmable, and do not require

protein enzymes. The DNAzymes-based designs

presented in that research [26] are: finite state au-

tomaton, DNAzymes FSA (it performs finite state

transitions using DNAzymes); extensions to it in-

cluding probabilistic automaton and

non-deterministic automaton, and its application as a

DNAzymes router for programmable routing of

nanostructures on a 2D DNA addressable network.

It is clear that smart nano-mechanical devices op-

erating in an autonomous way interests numerous

scientists. Recent successes in creating DNA

nano-structures of large scale, in constructing DNA

machines, provide a solid foundation for the next

step forward: creating autonomous DNA mechanical

devices capable of arbitrarily compound behavior.

One prototype system in the direction of this objec-

tive can be autonomous DNA mechanical device

competent for universal computation, by imitating

the actions of universal Turing machine. Building on

a previous work of [29]’s authors, as a theoretical

design and prototype experimental construction of an

autonomous unidirectional DNA walking device

moving along a linear track, the authors presented

the design of a nano-mechanical DNA device that

autonomously mimics the operation of a 2-state

5-color universal Turing machine. The autonomous

nano-mechanical device, called an Autonomous

DNA Turing Machine, is thus capable of universal

computation and hence complex translational motion,

which is defined as universal translational motion.

4.3. Finite State Machines with DNA
Polymers

In [30]the authors propose a chemical implemen-

tation of stack machines — a Turing-universal model

of computation similar to Turing machines- using

DNA strand displacement cascades as the underlying

chemical primitive. More specifically, the mecha-

nism they described is the addition and removal of

monomers (single unjoined organic molecules) from

the end of a DNA polymer, controlled by strand dis-

placement logic. Bennett’s proposed chemical Turing

machine[31] is one of the most important thought

experiments in the study of the thermodynamics of

computation. Yet the sophistication of molecular

engineering required to physically construct Ben-

Copyright © 2013 IJCSIT. A. ESHRA and A. EL-SAYED

13 International Journal of Computing Science and Information www.ijcsit.org`

 Vol. 01, issue 01, January 2013

nett’s hypothetical polymer substrate and enzymes

has prevented experimental implementations. The

authors contributed also in capturing the motivating

feature of Bennett’s scheme: that physical reversibil-

ity corresponds to logically reversible computation,

and arbitrarily little energy per computation step is

required. Further, as a method of embedding logic

control into chemical and biological systems, poly-

mer-based chemical computation is significantly

more efficient than geometry-free chemical reaction

networks. However their construction lacks the at-

tractive feature of material recycling. Yet, in their

scheme, different fuel molecules would be used in

the “compute” and “retrace” phases of the trans-

formed Turing machine computation, and would not

be regenerated.

In [32] the authors overview a series of their re-

search on implementing finite automata in vitro and

in vivo in the framework of DNA-based computing.

First, they employ the length-encoding technique

presented in [33, 34] to implement finite automata in

test tube. In the length-encoding method, the states

and state transition functions of a target finite autom-

aton are effectively encoded into DNA sequences, a

computation (accepting) process of finite automata is

accomplished by self-assembly of encoded comple-

mentary DNA strands, and the acceptance of an input

string is determined by the detection of a completely

hybridized double-strand DNA. Secondly, they re-

port their intensive in vitro experiments in which

they have implemented and executed several fi-

nite-state automata in test tube. They have carried

laboratory experiments on various finite automata of

from 2 states to 6 states for several input strings.

4.4. Using DNA FSM to build nano-devices

As an application for the DNAzymes Finite state

machine discussed earlier, in [26] the authors pro-

posed a DNAzymes router for programmable routing

of nanostructures on a 2D DNA addressable lattice.

Furthermore, they gave a medical-related application,

DNAzymes doctor that provide transduction of nu-

cleic acid expression: it can be programmed to re-

spond to the under-expression or over-expression of

various strands of RNA, with a response by release

of RNA.

DNA finite state automata can be used to build

DNA tweezers. In [35] the authors built three DNA

tweezers that are activated by the inputs H+/OH-;

Hg2+/cysteine; nucleic acid linker/complementary

anti-linker to yield a 16-states finite-state automaton.

The outputs of the automata are the configuration of

the respective tweezers (opened or closed) deter-

mined by observing fluorescence from a

fluorophore/quencher pair at the end of the arms of

the tweezers. The system exhibits a memory because

each current state and output depends not only on the

source configuration but also on past states and in-

puts.

5. Using Finite state machines in
modelingand Analyzing DNA

Another direction of using DNA finite state ma-

chines is to train a FSM as a good/bad classifier for

PCR (polymerase chain reaction) primers [36]. PCR

primers are short sequences of DNA used in a reac-

tion that amplifies other DNA. PCR amplification of

DNA underlies a multitude of technologies from fo-

rensic DNA fingerprinting to genetic mapping. The

system presented in [36] is a post-production add-on

to a standard primer picking program intended to

compensate for organism and lab specific factors.

In [37] a project presents an updated method for

classification of PCR primers in mice using finite

state classifiers. Five different evolutionary algo-

rithms that use an incremental fitness reward are used

for training these classifiers.

Recently Finite state machines can be used to im-

prove modeling and analysis of DNA properties and

protein structure. In [38] the authors extends an early

study on discrete events system formulations of DNA

hybridization, and focuses discussions on gene muta-

tion in Molecular Biology. Key concepts and ana-

lyzing the process related to those phenomena can be

expressed by applying FSM theory.

6. Discussion

In Shapiro’s restriction enzymes model applica-

tion[25], the researchers implemented 1012 automa-

ta, sharing the same software, run independently and

in parallel on inputs at a combined rate of 109 transi-

tions per second with transition fidelity greater than

99.8%, consuming less than 10-10 W. However, in

Shapiro’s model it is noticed that final detection re-

mains labor intensive and it contains programming

amounts to selecting suitable software molecules.

In Nowzari’s models [27], the use of paramagnetic

beads greatly reduces performance time and demon-

strates DNA chip compatibility of the models. In one

of the models, the lengths of DNA strands created

during the intermediate operations are independent of

the length of the input string. The three operations

used in the first algorithm, ligation, hybridization and

optical extraction, are all very simple. Also, the use

of biotin labeled DNA and streptavidin-coated para-

magnetic beads allows each cycle to be performed

within minutes manually. However, a very attractive

feature of the system is its automation, which would

allow hundreds of thousands input sequences to be

analyzed simultaneously and rapidly. Finally, the two

models are simple models to implement in the labor-

atory. The implementations of both models can be

further made fault-tolerant and can be easily used for

A. ESHRA and A. EL-SAYED Copyright © 2013 IJCSIT.

14 International Journal of Computing Science and Information www.ijcsit.org

 Vol. 01, issue 01, January 2013

implementing nondeterministic models. Optical ex-

traction in both models detects the final state which

can be considered much easier than Shapiro’s result

detection.

In Rothemund’s proposal [28], the researchers as-

signed real DNA sequences to their schematic that

could be used with commercially available enzymes

to implement a Turing machine in lab. They recog-

nized that the Turing machine model, while useful

for proving theoretical results, may be too slow to do

any practical computation. This proposal can be con-

sidered as an open a door for other researchers to

come up with a series of operations from which one

can build a practical universal molecular computer.

The DNAzymes-based devices are independent,

programmable, do not require protein enzymes, and

allow for the execution of multiple state transitions.

In the DNAzymes FSA, the number of DNAzymes

required is proportional to the number of transitions

in the automata. For binary-coded inputs the number

of transitions is proportional to number of states.

However, the implementation of finite state machines

that do not have a planar layout might be challeng-

ing.

Different architectures for molecular computing

such as algorithmic self-assembly, circuits imple-

mented with chemical reaction networks (CRNs).

Turing machines implemented with CRNs and poly-

mer CRNs embody different tradeoffs between time,

volume, energy and uniformity. In [30] the proposed

construction is exponentially more efficient in terms

of the required molecular counts and volume than

geometry-free Turing-universal computation using

strand displacement reactions, and also polynomially

faster. Moreover, their polymer CRNconstruction in

theory yields the correct computation output with

probability 1. However, the construction lacks the

attractive feature of material recycling.

Another direction takes the DNA FSM to improve

primer design performance by using machine learn-

ing as a latch on post-processing to capture features

of primer performance not related directly to the

DNA biophysics already implanted in primer-picking

packages. The technique applied in [36] appears to

have yielded improved performance.In [37] updating

methods of PCR primers classifications can com-

pensate for many lab, organism and chemical specific

factors that are costly. Using Finite State Classifiers

can help decrease the number of primers that fail to

amplify correctly. By controlling the fitness reward

correctly, there is a potential to develop classifiers

with a high probability of accepting only good pri-

mers.Modeling and analysis of DNA properties and

protein structure can be improved also by using finite

state machines. In [38]the researchers managed to

mathematically represent and interpret metabolism

and the effects to structures of protein macro mole-

cule caused by gene mutation.

7. Conclusion

FSA has been challenging for conventional com-

puters, in its programming and in its execution. The

bigger the machine becomes the more execution time

it costs. On the other hand, DNA has proved to have

the ability of massive parallelism. So in the last few

years, many approaches have been presented to use

DNA in solving many computational problems in-

cluding FSA. Three approaches have been discussed

in this article with their pros and cons. The ap-

proaches are: Restriction Enzymes FSMs,

DNAzymes FSMs, and DNA Polymers FSMs. After

this comparison, we decided to go with DNAzymes

FSM, make a design and experience it in the wet lab.

REFERENCES

[1] Watson, J.D. and F.H.C. Crick, Molecular

Structure of Nucleic Acids: A Structure for

Deoxyribose Nucleic Acid. Nature, 1953.

171(4356): p. 737-738.

[2] Nayebi, A., Fast matrix multiplication tech-

niques based on the Adleman-Lipton model.

Matrix, 2009: p. 15.

[3] Qian, L. and E. Winfree, Scaling Up Digital

Circuit Computation with DNA Strand Dis-

placement Cascades. Science, 2011. 332(6034):

p. 1196-1201.

[4] Beissenhirtz, M.K. and I. Willner, DNA-based

machines. Organic & Biomolecular Chemistry,

2006. 4(18): p. 3392-3401.

[5] Gill, A., Introduction to the theory of finite-state

machines / Arthur Gill. 2002, New York :

McGraw-Hill.

[6] Green, S.J., D. Lubrich, and A.J. Turberfield,

DNA Hairpins: Fuel for Autonomous DNA De-

vices. Biophysical journal, 2006. 91(8): p.

2966-2975.

[7] Lakin, M.R., et al., Visual DSD: a design and

analysis tool for DNA strand displacement sys-

tems. Bioinformatics, 2011.

[8] Copeland, B.J., The Essential Turing: Seminal

Writings in Computing, Logic, Philosophy, Ar-

tificial Intelligence, and Artificial Life plus The

Secrets of Enigma 2004, Oxford UK: Clarendon

Press (Oxford University Press).

[9] Rich, E.A., Automata, Computability and Com-

plexity: Theory and Applications. 2007: Pren-

tice Hall.

[10] Adleman, L.M., Molecular computation of so-

lutions to combinatorial problems. Science,

1994. 266(11): p. 1021-1024.

[11] Liedl, T., T.L. Sobey, and F.C. Simmel,

DNA-based nanodevices. Nano Today, 2007.

2(2): p. 36-41.

Copyright © 2013 IJCSIT. A. ESHRA and A. EL-SAYED

15 International Journal of Computing Science and Information www.ijcsit.org`

 Vol. 01, issue 01, January 2013

[12] Benenson, Y., et al., An autonomous molecular

computer for logical control of gene expression.

Nature, 2004. 429(6990): p. 423-429.

[13] Kohavi, Z. and N.K. Jha, Switching and finite

automata theory. 3rd ed. 2010, Cambridge:

Cambridge University Press.

[14] Clarke, E.M., O. Grumberg, and D.A. Peled,

Model Checking. 2000, Cambridge: MA: MIT

Press.

[15] Tian, Y. and C. Mao, Molecular gears: a pair of

DNA circles continuously rolls against each

other. J Am Chem Soc, 2004. 126(37): p.

11410-1.

[16] Rose, J.A., et al., DNA Implementation of Fi-

nite-State Machines, in Second Conference on

Genetic Programming. 1997: Stanford Univer-

sity in Stanford, California.

[17] Seeman, N.C., From genes to machines: DNA

nanomechanical devices. Trends Biochem Sci,

2005. 30(3): p. 119-25.

[18] Seelig, G., et al., Enzyme-Free Nucleic Acid

Logic Circuits. Science, 2006. 314(5805): p.

1585-1588.

[19] Garzon, M. and E. Eberbach, Dynamical Im-

plementation of Nondeterministic Automata and

Concurrent Systems, in Revised Papers from

the First International Workshop on Imple-

menting Automata. 1997, Springer-Verlag. p.

35-49.

[20] Barua, R. and J. Misra, Binary Arithmetic for

DNA Computers, in DNA Computing, M.

Hagiya and A. Ohuchi, Editors. 2003, Springer

Berlin Heidelberg. p. 124-132.

[21] Wu, G. and N. Seeman, Multiplying with DNA.

Natural Computing, 2006. 5(4): p. 427-441.

[22] Nayebi, A., Fast matrix multiplication tech-

niques based on the Adleman-Lipton model.

International Journal of Computer Engineering

Research, 2011. 3(1): p. 10-19.

[23] Ogihara, M., Breadth First Search 3SAT Algo-

rithms for DNA Computers. 2004.

[24] B., E., Baum, and D. Boneh, Running dynamic

programming algorithms on a DNA computer.

In Proceedings of the Second Annual Meeting

on DNA Based Computers, 1996: p. 141-147.

[25] Benenson, Y., et al., Programmable and au-

tonomous computing machine made of biomol-

ecules. Nature, 2001. 414(6862): p. 430-434.

[26] Reif, J. and S. Sahu, Autonomous programma-

ble DNA nanorobotic devices using

DNAzymes. Theoretical Computer Science,

2009. 410(15): p. 1428-1439.

[27] Nowzari-Dalini, A., et al., A New DNA Imple-

mentation of Finite State Machines. Interna-

tional Journal of Computer Science & Applica-

tions, 2006. 3(1): p. 51 -60.

[28] Rothemund, P.W.K. A DNA and restriction

enzyme implementation of Turing Machines. in

DIMACS Series in Discrete Mathematics and

Theoretical Computer Science. 2000.

[29] Yin, P., et al., Design of an autonomous DNA

nanomechanical device capable of universal

computation and universal translational motion,

in Proceedings of the 10th international confer-

ence on DNA computing. 2005, Spring-

er-Verlag: Milan, Italy. p. 426-444.

[30] Qian, L., D. Soloveichik, and E. Winfree, Effi-

cient Turing-Universal Computation with DNA

Polymers, in DNA Computing and Molecular

Programming, Y. Sakakibara and Y. Mi, Edi-

tors. 2011, Springer Berlin / Heidelberg. p.

123-140.

[31] Bennett, C.H., et al., Thermodynamics of com-

putation and information distance, in Proceed-

ings of the twenty-fifth annual ACM symposi-

um on Theory of computing. 1993, ACM: San

Diego, California, United States. p. 21-30.

[32] Sakakibara, Y., Bio-molecular computing of

finite-state machine, in Proceedings of the 3rd

International Conference on Bio-Inspired Mod-

els of Network, Information and Computing

Sytems. 2008, ICST (Institute for Computer

Sciences, Social-Informatics and Telecommu-

nications Engineering): Hyogo, Japan. p. 1-2.

[33] Yokomori, T., Y. Sakakibara, and S. Koba-

yashi, A magic pot: self-assembly computation

revisited, in Formal and natural computing, B.

Wilfried, et al., Editors. 2002, Springer-Verlag

New York, Inc. p. 418-429.

[34] Sakakibara, Y. and T. Hohsaka, In Vitro Trans-

lation-Based Computations, in DNA Compu-

ting, J. Chen and J. Reif, Editors. 2004, Spring-

er Berlin / Heidelberg. p. 1982-1982.

[35] Wang, Z.-G., et al., All-DNA finite-state au-

tomata with finite memory. Proceedings of the

National Academy of Sciences, 2010. 107(51):

p. 21996-22001.

[36] Ashlock, D., A. Wittrock, and W. Tsui-Jung.

Training finite state machines to improve PCR

primer design. in Evolutionary Computation,

2002. CEC '02. Proceedings of the 2002 Con-

gress on. 2002.

[37] Yadav, S.R. and S.M. Corns. Improved PCR

design for mouse DNA by training finite state

machines. in Computational Intelligence in Bi-

oinformatics and Computational Biology

(CIBCB), 2010 IEEE Symposium on. 2010.

[38] Gao, R., W.-S. Hu, and C.-Q. Zhang, Modeling

and Analysis of DNA Mutation Effects on Pro-

tein Structure with Finite State Machine, in

Advances in Electronic Engineering, Commu-

A. ESHRA and A. EL-SAYED Copyright © 2013 IJCSIT.

16 International Journal of Computing Science and Information www.ijcsit.org

 Vol. 01, issue 01, January 2013

nication and Management. Vol 2, D. Jin and S.

Lin, Editors. 2012, Springer Berlin Heidelberg.

p. 317-323.

Author Biography

Abeer ESHRA Demonstrator,

of Computer Science and En-

gineering dept Faculty of Elec-

tronic Engineering, Menoufiya

University, Egypt. She received

her B.Sc. degree in computer

science and engineering in

2006. She works as a demon-

strator in Department of Com-

puter Science and Engineering, Faculty of Electronic

Engineering, Menoufiya University, Egypt.

Ayman EL-SAYED Associ-

ate Professor, of Computer

Science and Engineering dept.

Faculty of Electronic Engi-

neering, Menoufiya Univer-

sity, Egypt. He received his

B.Sc. degree in computer

science and engineering in

1994, his Master degree in computer networks in 2000

from the University of Menoufiya, Egypt, and his PhD

degree in computer network in 2004 from ”Institute

National De Polytechnique De Grenoble” INPG,

France. He worked in Department of Computer Sci-

ence and Engineering, Faculty of Electronic Engi-

neering, Menoufiya University, Egypt. Now he is

working a head of Computer Science and Information

System Department, Alquwayiyah Community Col-

lege, Shaqra University, KSA. He is specialized in

Soft Computing, Algorithms, and Data Structure.

Also, his interests include multicast routing protocols,

application-level multicast techniques, IP Trace back

for security, multicast on both Mobile Network and

Mobile IP, and Image processing techniques. Also,

there are other interesting topics such as Bioinfor-

matics, BioComputing, and BioComputer. He is an

approved Supervisor for M.Sc and Ph.D Programmes

in various University. He has completed various

project in government and private organization. He

has published more than 35 research papers in

international Journals and two books about OSPF

protocol and multicast protocols. Currently he is

serving as Editorial Board Member in various

international Journal and conferences.

