
1

Cheating Avoidance Algorithms for an Overlay
Multicast protocol

Ayman EL-SAYED, IEEE Member
Computer Science & Engineering Dept.,

Faculty of Electronic Engineering,
Menoufiya University, EGYPT

Site: http://ayman.elsayed.free.fr/
e-mail: ayman.elsayed@free.fr

Abstract— In this paper we improve the performance
of an overlay multicast or End-system Multicast protocol
(ESM), ESM is a multicast protocol where everything is
being controlled by a single host called Rendez-vous point
(RP). RP is responsible of overlay creation. Each group
member informs RP by the metrics between itself and the
other group members. Some of group members may be
cheats. A cheat informs RP that it has the minimum delay
to the source and the infinity delay to the other group
members. The overlay multicast is not efficient due to
the wrong metrics between group members because of
these cheats. So, we propose algorithms to detect the
cheat members and create an overlay multicast having
performance like the overlay multicast without cheating.

Index Terms — Multicast protocol, Ens-system Multi-
cast, Application-level Multicast, Cheating.

I. INTRODUCTION

End-system Multicast (ESM) [1] protocols creates
an overlay depending on the metrics between the group
members. Each group member collect the metrics be-
tween itself and the other group members. All metrics
are collected either on a single node or on distributed
nodes.

The End-System Multicast (ESM) can be classified
into two main categories: (i) tree first approaches,
where an overlay tree is constructed on the physical
network as in [2], (ii) Mesh first approaches, where a
mesh is constructed on the physical network and then
a tree is created on the constructed mesh. The mesh
first approach is classified into three categories: (a) a
distributed protocols like NARADA [3], (b) central-
ized protocol like ESM [1] and Host-based Multicast
(HBM) [4], (c) semi-centralized as described in [5],
[6].

In [7], a highly scalable locating algorithm is pro-
posed to gradually direct newcomers to their a set of

their closest nodes without inducing high overhead.
On the basis of this locating process, they build a
robust and scalable topology-aware clustered hierar-
chical overlay scheme to support large scale multicast
applications.

If we consider the very popular round-trip time
(RTT) distance measurements used in end-system mul-
ticast protocols, a cheat could delay a probe received
from another receiver to artificially increase their mea-
sured distance in order to try and reduce its replication
burden (since the further away another receiver is, the
more likely that receiver will be connected to another
(closer) node). For scalability reasons, most of the
existing end-system multicast protocols require that
each node measures its distance to other nodes in the
overlay tree and reports these distance measurements
to other nodes and/or uses these for decision making.
A cheat can therefore lie outright about its distance
measurements, in order to try and improve its position
in the tree [8].

It is important to note that the cheats considered in
this paper do not attempt to disrupt the flow of data
along the overlay tree or even to break the protocol
used to build the tree, they simply try and improve
their position in the tree. Some end-system multicast
protocols are described and ad-hoc multicast protocols
with the cheating in [9] and [10] respectively. Member
(i.e. receiver) cheating may transform the multicast
tree, and lead to its instability. In [11], the authors
establish the cheating model of end-system multicast
receivers and analyze the stability of overlay tree
topology when receiver cheating occurs.

The remainder of the paper is organized as follows:
we describe the impact of cheats in section II, the
algorithm to detect the cheating in section III, propose

ICCTA 2007, 1-3 September 2007, Alexandria, Egypt 41

2

algorithms to know the selfish (cheat) members and
cancel the effect of cheating in section IV, and the
results are discussed in section V. Finally, we conclude
the paper in section VI.

II. IMPACT OF CHEATS

Since the hosts in the overlay multicast are selfish,
without a proper payment scheme, they may not for-
ward others messages or they may try to cheat the
system, if the cheating can maximize their welfare. In
particular, a selfish node can exhibit one of the three
selfish actions:

• After receiving a message, the node saves a re-
ceipt but does not forward the message;

• The node has received a message but does not
report the receipt;

• The node does not receive a message but falsely
claims that it has received the message.

Note that any of the selfish actions above can be
further complicated by collusion of two or more nodes.
We next progressively determine the requirements on
our system in order to prevent the above actions.

The important point here is that there is an oppor-
tunity for receivers to try and improve their position
on the overlay tree by manipulating distance measure-
ments, in order to be positioned closer to the data
source while limiting, to a minimum, their replication
burden.

In another word, we show an example. There are
20 hosts started with identifiers from ”2” to ”21”
and a source having identifier ”1” and each host has
the maximum number of neighbors of 6. Firistly, we
suppose that there is no selfish hosts. Figure 1 shows
an overlay network without selfish hosts, where the
dashed circule is the source host, the bold circule is
noncheat host and the thin bold line is the link between
two hosts.

Now, we suppose that there are selfish hosts (both
20% and 75% of hosts are cheat hosts) shown in Figure
2 and 3 respectively. Selfish hosts make both the delay
metric between itself and the source be either zero or
right value (real). Also they make the delay between
itself and the other hosts be the highest (infinity), by
adding 10 sec to the real dealy (i.e. honor↔cheat =
real delay+10sec). In the case of two selfish hosts,
adding 10sec for each one (i.e. cheat↔cheat = real
delay+20sec).

In case of small number of cheats (20% of cheats)
as shown in Figure 2, the selfish hosts are shown as

11

20

21

13 18

4

3

19 2

15

6

17

10

16

5
7

12

14

8

Source Host NonCheat Host

1

9

Fig. 1. An overlay multicast without cheats

11

20

21

13 18

19

15

6

17

10

16

7

12

14

8

Source Host NonCheat Host Cheat Host

9

1 2

5

4

3

Fig. 2. An overlay multicast with 20% of cheats, with maximum
number of neighbours=6

dotted circule (i.e.hosts: 2, 3, 4, and 5). All selfish hosts
are directly attached to the source. But the number of
cheats is less than the maximum number of neighbours
(fanout). We note that all noncheat hosts are connected
to the source directly not via selfish hosts. We show
that the selfish host ”2” for example, improves its
position in the overlay. It connected to the source host
instead of connected to the hosts 6, 10, 15, and 19.
So it satisfies the objective of cheating. Also, we note
that the selfish hosts are connected to the source and
they has no childern hosts. There is no big changing of
overlay network but the source has maximum number
of neighbors (i.e 6).

In case of most hosts being cheat, there are two
issues:

ICCTA 2007, 1-3 September 2007, Alexandria, Egypt 42

3

20

21

18

19

17

Source Host NonCheat Host Cheat Host

1 2

5

4

3
9

11

15

7

12

14
16

10

13

8
6

(a) Source↔cheat delay=real

20

21

18

19

17

Source Host NonCheat Host Cheat Host

1

9

2

6

10

14

12

7
5

1615

3

4

8

13

11

(b) Source↔cheat delay=zero

Fig. 3. Overlay multicast with 75 % of cheats, with maximum
number of neighbours=6

• Source-to-Cheat Real Delay: cheat↔source =
real delay, it means that the selfish member let
its delay to the source as it is and increase its
delay to the other members by a factor, as shown
in Figure 3-a.

• Source-to-Cheat Zero Delay: cheat↔source =
zero, it means that the selfish member set its delay
to the source to zero and increase its delay to the
other members by a factor,as shown in Figure 3-b.

In general, we describe the effect of cheating for the
previous two issues that are shown in Figure 4. This
figure depicts the number of changed links because
of cheating versus number of selfish members with
varying number of neighbors such as 3, 6, 9, 12, and
15, where number of all members = 100 (both selfish
and honor) members.

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
ha

ng
ed

 L
in

ks

Number of Selfish Members

Fanout = 3
Fanout = 6
Fanout = 9

Fanout = 12
Fanout = 15

(a) Source-to-Cheat Real Delay

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
ha

ng
ed

 L
in

ks

Number of Selfish Members

Fanout = 3
Fanout = 6
Fanout = 9

Fanout = 12
Fanout = 15

(b) Source-to-Cheat Zero Delay

Fig. 4. The effect of cheating on overlay Topology

We note that increase in number of neighbors,
increase the number of changed links because with
increasing the number of neighbors takes chance for
selfish members to connect the source. When number
of selfish members less than 20% of all members, the
number of changed links approximatly linear increase
because the many metrics among members equal real
values and the other metrics are increased by a cheated
time delay or double a cheated delay. When number
of selfish members is more than 90%, the number
of changed links linear decreases, and the metrics
having real values is very small. The other metrics
increased by a fixed value, so the metrics are increased
by the multiple of its real values. So, the effect of
cheating becomes a big problem when the number of
selfish members is more than the maximum number of

ICCTA 2007, 1-3 September 2007, Alexandria, Egypt 43

4

available neighbours.

III. DETECT THE CHEATING

First, we suppose the distance (ie. time delay) be-
tween node i and node j as Di↔j , the node i that has
parent p is NP

i , and the neighbour node j of node i is
N i

j . There is a cheating, if there are neighbors of the
source (N s

j) and they have a neighbor (i.e. the source)
only except one of them that has two neighbors (i.e.
the source and another member). This case is appeared
when the number of selfish members is more than the
maximum number of available neighbors in the overlay
topology. It is important that we detect there is cheating
(e.g. at least one selfish member) to apply our cheat
avoidance algorithms.

A. Source-to-Cheat Real Delay

In order to detect the selfish hosts in this case, we
use the following: For each neighbour (N S

j) of source
(S), if (DS↔NS

j
=real value && there is no N j

i) then
NS

j may be cheat (i.e. selfish node).
In this case, we found the source is connected

to either selfish nodes and honor nodes (i.e. state
(I)) or selfish nodes only (i.e. state (II)), that is
depending upon the number of selfish hosts and the
delays between the source and all nodes. In this case
we can say that there is a cheating.

B. Source-to-Cheat Zero Delay

In order to detect the selfish hosts in this case, we
use the following: For each neighbour (N S

j) of source
(S) if (DS↔NS

j
=Zero or real value && DNS

j
↔Nj

i
=

real value && N j
i is one neighbor only) then N S

j

may be cheat. In this case we can say that there is
a cheating.

IV. AVOID CHEATS

A. Parameters Definations

We suppose the maximum time delay (Dmax),
minimum time delay (Dmin), and the average time
delay (Davg) = Dmax+Dmin

2
, the minimum time de-

lay between a selfish member and honour member
(DMinOneCheat), we can say that there is a self-
ish member (Ni) where Nj is a honor member, if
the time delay (Di↔j) is more than DMinOneCheat.
Also, we can say that there are two selfish members

if the minimum time delay among them more than
the minimum time delay among two selfish members
(DMinTwoCheat). But the question here how to ob-
tain both DMinOneCheat and DMinTwoCheat? Because
selfish member increases its time delay between itself
and other member except the source, then the time
delay among two selfish members is increased two
times but that delay between a selfish and an honor
member is increased one time only. These parameters
are shown in Figure 5. We can obtain DMinOneCheat

and DMinTwoCheat as following:
DMinOneCheat =

Dmin+Davg

2
.

DMinTwoCheat =
Davg+Dmax

2
.

MinOneCheatD

avgDminD maxD

MinTwoCheatD

MaxRealD

Average

Average Average

Fig. 5. Detect Cheats Boundaries

B. Detect/Know Selfish Members

After detecting the cheating, we can count and Know
all slefish members by the following algorithm:

• Dmin = get minimum of all metrics between each
pair of members.

• Dmax = get maximum of all metrics between each
pair of members.

• Davg = Dmax+Dmin

2
.

• DMinOneCheat = Dmin+Davg

2
.

• DMinTwoCheat = Davg+Dmax

2
.

• Set counter (c = 0).
• Choose any member except the source, say N2

for example.
• Repeat for each j = 3...N, where N: Number of

all members:
– if D2↔j > DMinTwoCheat), then both N2

and Nj are selfish members then add them
to a selfish members group, with taking into

ICCTA 2007, 1-3 September 2007, Alexandria, Egypt 44

5

account no repeated member in this selfish
members group.

– if (D2↔j > DMinOneCheat and D2↔j <
DMinTwoCheat), then either N2 or Nj is a
selfish member, if N2 is added before in
selfish members group, then do nothing, else
add both N2 and Nj as a member-pair unit
in doubted members group.

• Check each member-pair unit in doubted group:
– if there is a repeated member in member-pair

unit, then add another member in member-
pair unit to selfish members group and delete
these member-pair unit.

– if a member in member-pair unit occurs in the
selfish member group, delete this member-
pair unit, repeat this step until doubted group
is empty.

Let the maximum real time (i.e. among two honor
members) is DMaxReal as shown in Figure 5, we can
get DMaxReal by getting the maximum time delay
among honor members only, as following:

DMaxReal = MAX{all honor members-pair time
delay}

C. Cancel Cheating Effect: Adapting Metrics

After getting DMaxReal among honors members
only, we note that the time delay among two members
that are either one selfish member and an honor mem-
ber or two selfish members is more than DMaxReal.
These metric can be decremented by a step called
iteration step (Stpdec), till the metric becomes either
less than or equal to DMaxReal. The question here,
what is the value of Stpdec? Sure, the value is related
to DMaxReal but what is the value of Stpdec? Here
in this paper, we put Stpdec as some values less than
DMaxReal and some values more than DMaxReal, as
described in the following sections.

V. DISCUSSION AND RESULTS

We suppose the number of all members (N) is 100
members including one source that having identifier of
(N1), and the real delays among each two members-
pair is in the range from 1 ms to 10 ms.

After detecting the cheating, we can apply our
algorithms to modify the metrics in the cases: a selfish
member only, and selfish members of 20%, 50%, 80%,
and 100% of all members, as following: A cheat
member: Figure 6 shows the number of changed links

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14 16 18

C
ha

ng
ed

 L
in

ks

Iteration Step

Fanout = 3
Fanout = 6
Fanout = 9

Fanout = 12
Fanout = 15

(a) Case I: Real time between source and selfish member

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14 16 18

C
ha

ng
ed

 L
in

ks

Iteration Step

Fanout = 3
Fanout = 6
Fanout = 9

Fanout = 12
Fanout = 15

(b) Source-to-Cheat Zero Delay

Fig. 6. Changed Links versus Iteration step, with DMaxReal=
10ms and one member only cheats

versus the iteration step, with one member cheats. In
case of both Source-to-Cheat Real Delay (Figure 6-a)
and Source-to-Cheat Zero Delay (Figure 6-b), when
iteration step is less than 10, the number of changed
links is approximatly constant in range from 10% to
15% of all links. When iteration step more than 10, the
number of changed links is vibrated from zero to 25%
of all links. Finaly, we note that at iteration step = 10
that is equal to DMaxReal, we find there is no changing
in the overlay in case of Source-to-Cheat Real Delay
and the changed links is less than 15% of all links in
the case of Source-to-Cheat Zero Delay.

20% cheat members: Figure 7 shows the number
of changed links versus the iteration step, with cheats
= 20%. In case of Source-to-Cheat Real Delay (Figure
7-a), when iteration step is less than 10, the number

ICCTA 2007, 1-3 September 2007, Alexandria, Egypt 45

6

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18

C
ha

ng
ed

 L
in

ks

Iteration Step

Fanout = 3
Fanout = 6
Fanout = 9

Fanout = 12
Fanout = 15

(a) Source-to-Cheat Real Delay

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18

C
ha

ng
ed

 L
in

ks

Iteration Step

Fanout = 3
Fanout = 6
Fanout = 9

Fanout = 12
Fanout = 15

(b) Source-to-Cheat Zero Delay

Fig. 7. Changed Links versus Iteration step, with DMaxReal=
10ms and Cheats = 20%.

of changed links is approximatly constant and when
iteration step more than 10, the number of changed
links is vibrated. Finaly, we note that at iteration step
= 10 that is equal to DMaxReal, we find there is no
changing in the overlay when 20% of all members
cheat.

In case of Source-to-Cheat Zero Delay (Figure 7-b),
we note that at iteration step = DMaxReal, the number
of changed links is the smallest. It means, we can’t
get the real delay between the source and the selfish
because these delays become zero. But our algorithm
also modify the metric to get an overlay more near
to overlay without cheating. 50% cheat members:
Figure 8 shows the number of changed links versus
the iteration step, with cheats = 50%. Similar results
as in Figure 7 at iteration step equals DMaxReal (10

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18

C
ha

ng
ed

 L
in

ks

Iteration Step

Fanout = 3
Fanout = 6
Fanout = 9

Fanout = 12
Fanout = 15

(a) Source-to-Cheat Real Delay

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18

C
ha

ng
ed

 L
in

ks

Iteration Step

Fanout = 3
Fanout = 6
Fanout = 9

Fanout = 12
Fanout = 15

(b) Source-to-Cheat Zero Delay

Fig. 8. Changed Links versus Iteration step, with DMaxReal=
10ms and Cheats = 50%.

ms).
80% cheat members: Figure 9 shows the number

of changed links versus the iteration step, with cheats
= 80%. Similar results as in Figure 7 at iteration step
equals DMaxReal (10 ms).

100% cheat members: Figure 10 shows the num-
ber of changed links versus the iteration step, with
cheat = all members. Similar results as in Figure 7
at iteration step equals DMaxReal (10 ms). We note
that our algorithm success to modify the metrics to
obtain the overlay topology like that of no cheats occur
in the case of Source-to-Cheat Real Delay as shown
in Figures 6-a, 7-a, 8-a, 9-a, and 10-a. Our proposed
algorithms completly cancel the effect of cheating in
the case of Source-to-Cheat Real Delay, it means that
there is no change in the overlay topology when there

ICCTA 2007, 1-3 September 2007, Alexandria, Egypt 46

7

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18

C
ha

ng
ed

 L
in

ks

Iteration Step

Fanout = 3
Fanout = 6
Fanout = 9

Fanout = 12
Fanout = 15

(a) Source-to-Cheat Real Delay

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18

C
ha

ng
ed

 L
in

ks

Iteration Step

Fanout = 3
Fanout = 6
Fanout = 9

Fanout = 12
Fanout = 15

(b) Source-to-Cheat Zero Delay

Fig. 9. Changed Links versus Iteration step, with DMaxReal=
10ms and Cheats = 80%.

is a selfish member or more. But in the case of Source-
to-Cheat Zero Delay, our algorithm can decreases the
number of changed links, less than 25% of all overlay
links as shown in Figures 6-b, 7-b, 8-b, 9-b, and 10-
b. Before it is more than 80% as shown in Figure 4.
The summary is shown in Figure 11. We note that our
algorithms decrease the number of changed links to
be equal zero or less than 25% of all links. So our
algorithm can cancel the effect of cheating in both
issues.

VI. CONCLUSION

In this paper, we have studied the impact of cheat-
ing on the performance of application-level multicast
overlay trees. We have shown that the cheating always
have negative impact, either on the performance of the

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18

C
ha

ng
ed

 L
in

ks

Iteration Step

Fanout = 3
Fanout = 6
Fanout = 9

Fanout = 12
Fanout = 15

(a) Source-to-Cheat Real Delay

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18

C
ha

ng
ed

 L
in

ks

Iteration Step

Fanout = 3
Fanout = 6
Fanout = 9

Fanout = 12
Fanout = 15

(b) Source-to-Cheat Zero Delay

Fig. 10. Changed Links versus Iteration step, with DMaxReal=
10ms and All Members Cheat.

tree as perceived by its nodes (both cheats and honest
receivers), or on the underlying physical network, or
on both. We proposed an algorithm to detect/know the
selfish member and another algorithm to cancel the
effect of cheating on the metric values. these algorithm
can obtain the metrics by that the overlay topology is
the same like that without cheating.

REFERENCES

[1] Anirban Chakrabarti and Govindarasu Manimaran, “A case
for mesh-tree-interaction in end system multicasting,” in
NETWORKING 2004, LNCS 3042, pp. 186-199, November
2004.

[2] Laurent Mathy, Roberto Canonico, and David Hutchison, “An
overlay tree building control protocol,” in proceeding of
the third International COST264 Workshop, Networked Group
Communication (NGC 2001), London, UK, pp. 76-87, Nov.
2001.

ICCTA 2007, 1-3 September 2007, Alexandria, Egypt 47

8

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
ha

ng
ed

 L
in

ks

Number of Selfish Members

Bef:Fanout = 3
Bef:Fanout = 6
Bef:Fanout = 9

Bef:Fanout = 12
Bef:Fanout = 15

Aft:Fanout = 3
Aft:Fanout = 6
Aft:Fanout = 9

Aft:Fanout = 12
Aft:Fanout = 15

(a) Source-to-Cheat Real Delay

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
ha

ng
ed

 L
in

ks

Number of Selfish Members

Bef:Fanout = 3
Bef:Fanout = 6
Bef:Fanout = 9

Bef:Fanout = 12
Bef:Fanout = 15

Aft:Fanout = 3
Aft:Fanout = 6
Aft:Fanout = 9

Aft:Fanout = 12
Aft:Fanout = 15

(b) Source-to-Cheat Zero Delay

Fig. 11. Changed Links versus cheats, with Stpdec = DMaxReal

[3] Yang hua Chu, S. Rao, and H. Zhang, “A case for end system
multicast,” in ACM SIGMETRICS, pp. 1-12, June 2000.

[4] Vincent Roca and Ayman El-sayed, “A host-based multicast
(hbm) solution for group communications,” in First IEEE
International Conference on Networking (ICN’01), Colmar,
France, pp. 610-619, July 2001, pp. 610–619.

[5] Ayman El-sayed, “Semi-centralized approach for end-system
multicast protocol,” in Menofia Journal of faculty of Electronic
Engineering Research (MJEER), 15-2, july 2005.

[6] Ayman EL-SAYED, “A new approach for centralized end-
system multicast protocol,” in International Journal of Infor-
mation Acquisition (IJIA), Vol. 3, No. 1, March 2006.

[7] Mohamed Ali Dali Kaafar, Thierry Turletti, and Walid Dab-
bous, “A locating-first approach for scalable overlay multicast,”
in 14th IEEE International Workshop on Quality of Service,
IWQoS2006., June 2006.

[8] Mike Afergan and Rahul Sami, “Repeated-game modeling
of multicast overlays,” in IEEE INFOCOM 2006, Barcelona,
Spain, Apr. 2006.

[9] Laurent Mathy, Nick Blundell, Ayman EL-SAYED, and Vin-
cent ROCA, “Impact of simple cheating in application-level
multicast,” in IEEE INFOCOM, July 2004.

[10] Sheng Zhong, Jiang Chen, and Yang Richard Yang, “Sprite:
A simple, cheat-proof, credit-based system for mobile ad-hoc
networks,” in IEEE INFOCOM, July 2003.

[11] D. Li, Yong Cui, Ke Xu, and Jianping Wu, “Impact of receiver
cheating on the stability of alm tree,” in Global Telecommuni-
cations Conference, 2005. GLOBECOM ’05. IEEE, Vol.2, Iss.,
Dec. 2005.

ICCTA 2007, 1-3 September 2007, Alexandria, Egypt 48

